2025-02-23T10:49:07-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-119771%22&qt=morelikethis&rows=5
2025-02-23T10:49:07-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-119771%22&qt=morelikethis&rows=5
2025-02-23T10:49:07-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T10:49:07-05:00 DEBUG: Deserialized SOLR response
Enhanced phenomenological models of ion channeling contribution to doping profiles in crystals
New phenomenological models are proposed to describe the effect of an ordered lattice structure of crystalline targets on the as-implanted doping profiles of low-energy heavy ions. The models account for the channeling kinetics and clarify the effect of bi-directional transitions of ions between r...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут фізики конденсованих систем НАН України
2009
|
Series: | Condensed Matter Physics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/119771 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | New phenomenological models are proposed to describe the effect of an ordered lattice structure of crystalline
targets on the as-implanted doping profiles of low-energy heavy ions. The models account for the channeling
kinetics and clarify the effect of bi-directional transitions of ions between random-like and channeled modes
of motion on the target depth dependencies of dopant concentration. They also incorporate a simple model
of the target radiation damaging effect on doping profiles. The presented results of model validation against
the experimental and Monte Carlo computer simulation data and the comparative analysis of the capabilities
of the proposed and the existing models show that the application of a more physically grounded approach
allows us to improve the quality of doping profile description. The theoretical models developed are useful for
obtaining physical parameters of low-energy ion channeling kinetics from the experimental data. |
---|