On the structure of the supplementary series of unitary irreducible representations of the proper, ortochronous Lorentz group
Representations from the supplementary series of unitary irreducible representations of the proper, ortochronous Lorentz group are labelled by the parameter z , 0 < z < 1 . There are qualitative differences between representations with 0 < z < 1/2 and those with 1/2 < z < 1 ....
Збережено в:
Дата: | 1998 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
1998
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/119796 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On the structure of the supplementary series of unitary irreducible representations of the proper, ortochronous Lorentz group / A. Staruszkiewicz // Condensed Matter Physics. — 1998. — Т. 1, № 3(15). — С. 587-592. — Бібліогр.: 6 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Representations from the supplementary series of unitary irreducible representations of the proper, ortochronous Lorentz group are labelled by
the parameter z , 0 < z < 1 . There are qualitative differences between
representations with 0 < z < 1/2 and those with 1/2 < z < 1 . Two such differences are described in this paper: the probability density of
parabolic rotations in a spherically symmetric state is singular at the origin for 0 < z < 1/2 but regular for 1/2 < z < 1 ; the Casimir operator of
the little group, which preserves a space-like vector, has for 0 < z < 1/2 a bound state which disappears for 1/2 < z < 1. |
---|