Topological solitons of the Lawrence–Doniach model as equilibrium Josephson vortices in layered superconductors

We present a complete, exact solution of the problem of the magnetic properties of layered superconductors with an infinite number of superconducting layers in parallel fields H 0. Based on a new exact variational method, we determine the type of all stationary points of both the Gibbs and Helm...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2004
Автор: Kuplevakhsky, S.V.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2004
Назва видання:Физика низких температур
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/119840
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Topological solitons of the Lawrence–Doniach model as equilibrium Josephson vortices in layered superconductors / S.V. Kuplevakhsky // Физика низких температур. — 2004. — Т. 30, № 7-8. — С. 856-873. — Бібліогр.: 32 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-119840
record_format dspace
spelling irk-123456789-1198402017-06-11T03:05:13Z Topological solitons of the Lawrence–Doniach model as equilibrium Josephson vortices in layered superconductors Kuplevakhsky, S.V. Сверхпроводимость и мезоскопические структуры We present a complete, exact solution of the problem of the magnetic properties of layered superconductors with an infinite number of superconducting layers in parallel fields H 0. Based on a new exact variational method, we determine the type of all stationary points of both the Gibbs and Helmholtz free-energy functionals. For the Gibbs free-energy functional, they are either points of strict, strong minima or saddle points. All stationary points of the Helmholtz free-energy functional are those of strict, strong minima. The only minimizes of both the functionals are the Meissner (0-soliton) solution and soliton solutions. The latter represent equilibrium Josephson vortices. In contrast, non-soliton configurations (interpreted in some previous publications as «isolated fluxons» and «fluxon lattices») are shown to be saddle points of the Gibbs free-energy functional: They violate the conservation law for the flux and the stationarity condition for the Helmholtz free-energy functional. For stable solutions, we give a topological classification and establish a one-to-one correspondence with Abrikosov vortices in type-II superconductors. In the limit of weak interlayer coupling, exact, closed-form expressions for all stable solutions are derived: They are nothing but the «vacuum state» and topological solitons of the coupled static sine-Gordon equations for the phase differences. The stable solutions cover the whole field range 0 < H < ∞ and their stability regions overlap. Soliton solutions exist for arbitrary small transverse dimensions of the system, provided the field H to be sufficiently high. Aside from their importance for weak superconductivity, the new soliton solutions can find applications in different fields of nonlinear physics and applied mathematics. 2004 Article Topological solitons of the Lawrence–Doniach model as equilibrium Josephson vortices in layered superconductors / S.V. Kuplevakhsky // Физика низких температур. — 2004. — Т. 30, № 7-8. — С. 856-873. — Бібліогр.: 32 назв. — англ. 0132-6414 PACS: 74.50.+r, 74.80.Dm, 05.45.Yv http://dspace.nbuv.gov.ua/handle/123456789/119840 en Физика низких температур Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Сверхпроводимость и мезоскопические структуры
Сверхпроводимость и мезоскопические структуры
spellingShingle Сверхпроводимость и мезоскопические структуры
Сверхпроводимость и мезоскопические структуры
Kuplevakhsky, S.V.
Topological solitons of the Lawrence–Doniach model as equilibrium Josephson vortices in layered superconductors
Физика низких температур
description We present a complete, exact solution of the problem of the magnetic properties of layered superconductors with an infinite number of superconducting layers in parallel fields H 0. Based on a new exact variational method, we determine the type of all stationary points of both the Gibbs and Helmholtz free-energy functionals. For the Gibbs free-energy functional, they are either points of strict, strong minima or saddle points. All stationary points of the Helmholtz free-energy functional are those of strict, strong minima. The only minimizes of both the functionals are the Meissner (0-soliton) solution and soliton solutions. The latter represent equilibrium Josephson vortices. In contrast, non-soliton configurations (interpreted in some previous publications as «isolated fluxons» and «fluxon lattices») are shown to be saddle points of the Gibbs free-energy functional: They violate the conservation law for the flux and the stationarity condition for the Helmholtz free-energy functional. For stable solutions, we give a topological classification and establish a one-to-one correspondence with Abrikosov vortices in type-II superconductors. In the limit of weak interlayer coupling, exact, closed-form expressions for all stable solutions are derived: They are nothing but the «vacuum state» and topological solitons of the coupled static sine-Gordon equations for the phase differences. The stable solutions cover the whole field range 0 < H < ∞ and their stability regions overlap. Soliton solutions exist for arbitrary small transverse dimensions of the system, provided the field H to be sufficiently high. Aside from their importance for weak superconductivity, the new soliton solutions can find applications in different fields of nonlinear physics and applied mathematics.
format Article
author Kuplevakhsky, S.V.
author_facet Kuplevakhsky, S.V.
author_sort Kuplevakhsky, S.V.
title Topological solitons of the Lawrence–Doniach model as equilibrium Josephson vortices in layered superconductors
title_short Topological solitons of the Lawrence–Doniach model as equilibrium Josephson vortices in layered superconductors
title_full Topological solitons of the Lawrence–Doniach model as equilibrium Josephson vortices in layered superconductors
title_fullStr Topological solitons of the Lawrence–Doniach model as equilibrium Josephson vortices in layered superconductors
title_full_unstemmed Topological solitons of the Lawrence–Doniach model as equilibrium Josephson vortices in layered superconductors
title_sort topological solitons of the lawrence–doniach model as equilibrium josephson vortices in layered superconductors
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2004
topic_facet Сверхпроводимость и мезоскопические структуры
url http://dspace.nbuv.gov.ua/handle/123456789/119840
citation_txt Topological solitons of the Lawrence–Doniach model as equilibrium Josephson vortices in layered superconductors / S.V. Kuplevakhsky // Физика низких температур. — 2004. — Т. 30, № 7-8. — С. 856-873. — Бібліогр.: 32 назв. — англ.
series Физика низких температур
work_keys_str_mv AT kuplevakhskysv topologicalsolitonsofthelawrencedoniachmodelasequilibriumjosephsonvorticesinlayeredsuperconductors
first_indexed 2023-10-18T20:35:33Z
last_indexed 2023-10-18T20:35:33Z
_version_ 1796150603032821760