2025-02-22T10:16:58-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-119852%22&qt=morelikethis&rows=5
2025-02-22T10:16:58-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-119852%22&qt=morelikethis&rows=5
2025-02-22T10:16:58-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T10:16:58-05:00 DEBUG: Deserialized SOLR response

To the theory of spin–charge separation in one-dimensional correlated electron systems

Spin—charge separation is considered to be one of the key properties that distinguish low-dimensional electron systems from others. Three-dimensional correlated electron systems are described by the Fermi liquid theory. There, low-energy excitations (quasiparticles) are reminiscent of noninteract...

Full description

Saved in:
Bibliographic Details
Main Author: Zvyagin, A.A.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2004
Series:Физика низких температур
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/119852
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Spin—charge separation is considered to be one of the key properties that distinguish low-dimensional electron systems from others. Three-dimensional correlated electron systems are described by the Fermi liquid theory. There, low-energy excitations (quasiparticles) are reminiscent of noninteracting electrons: They carry charges e and spins 1/2. It is believed that for any one-dimensional correlated electron system, low-lying electron excitations carry either only spin and no charge, or only charge without spin. That is why recent experiments looked for such low-lying collective electron excitations, one of which carries only spin, and the other carries only charge. Here we show that despite the fact that for exactly solvable one-dimensional correlated electron models there exist excitations which carry only spin and only charge, in all these models with short-range interactions the low-energy physics is described by low-lying collective excitations, one of which carries both spin and charge.