The exact solution of self-consistent equations in the scanning near-field optic microscopy problem

The macroscopic approach that allows one to obtain an exact solution of the self-consistent equation of the Lippmann-Schwinger type is developed. The main idea of our method consist in usage of diagram technique for exact summation of the infinite series corresponding to the iteration procedure for...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:1999
Автори: Lozovski, V., Bozhevolnyi, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 1999
Назва видання:Semiconductor Physics Quantum Electronics & Optoelectronics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/119866
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The exact solution of self-consistent equations in the scanning near-field optic microscopy problem / V. Lozovski, S. Bozhevolnyi // Semiconductor Physics Quantum Electronics & Optoelectronics. — 1999. — Т. 2, № 3. — С. 45-56. — Бібліогр.: 28 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The macroscopic approach that allows one to obtain an exact solution of the self-consistent equation of the Lippmann-Schwinger type is developed. The main idea of our method consist in usage of diagram technique for exact summation of the infinite series corresponding to the iteration procedure for solving the self-consistent integral equation. The method developed is applied to calculations of near-field optical images obtained in illumination mode. It is assumed that the system under consideration consists of an object illuminated by the field scattered by a small probe. This assumption allows us to consider multiple scattering between a (point-like) probe and an extended object as well as inside the object. The exact solution for the self-consistent field is then obtained in terms of effective susceptibility of the probe-object system. Application of our method to the description of orientation of molecular complexes at the surface is discussed.