A consistent description of kinetics and hydrodynamics of systems of interacting particles by means of the nonequilibrium statistical operator method
A statistical approach to a self-consistent description of kinetic and hydrodynamic processes in systems of interacting particles is formulated on the basis of the nonequilibrium statistical operator method by D.N.Zubarev. It is shown how to obtain the kinetic equation of the revised Enskog theory...
Збережено в:
Дата: | 1998 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
1998
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/119887 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A consistent description of kinetics and hydrodynamics of systems of interacting particles by means of the nonequilibrium statistical operator method / M.V. Tokarchuk, I.P. Omelyan, A.E. Kobryn // Condensed Matter Physics. — 1998. — Т. 1, № 4(16). — С. 687-751. — Бібліогр.: 181 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | A statistical approach to a self-consistent description of kinetic and hydrodynamic processes in systems of interacting particles is formulated on the
basis of the nonequilibrium statistical operator method by D.N.Zubarev. It
is shown how to obtain the kinetic equation of the revised Enskog theory
for a hard sphere model, the kinetic equations for multistep potentials of interaction and the Enskog-Landau kinetic equation for a system of charged
hard spheres. The BBGKY hierarchy is analyzed on the basis of modified
group expansions. Generalized transport equations are obtained in view
of a self-consistent description of kinetics and hydrodynamics. Time correlation functions, spectra of collective excitations and generalized transport
coefficients are investigated in the case of weakly nonequilibrium systems
of interacting particles. |
---|