Generalized inequalities for the Bogoliubov-Duhamel inner product with applications in the Approximating Hamiltonian Method

Infinite sets of inequalities which generalize all the known inequalities that can be used in the majorization step of the Approximating Hamiltonian method are derived. They provide upper bounds on the difference between the quadratic fluctuations of intensive observables of a N -particle system and...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Brankov, J.G., Tonchev, N.S.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2011
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/119901
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Generalized inequalities for the Bogoliubov-Duhamel inner product with applications in the Approximating Hamiltonian Method / J.G. Brankov, N.S. Tonchev // Condensed Matter Physics. — 2011. — Т. 14, № 1. — С. 13003: 1-17. — Бібліогр.: 37 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-119901
record_format dspace
spelling irk-123456789-1199012017-06-11T03:03:53Z Generalized inequalities for the Bogoliubov-Duhamel inner product with applications in the Approximating Hamiltonian Method Brankov, J.G. Tonchev, N.S. Infinite sets of inequalities which generalize all the known inequalities that can be used in the majorization step of the Approximating Hamiltonian method are derived. They provide upper bounds on the difference between the quadratic fluctuations of intensive observables of a N -particle system and the corresponding Bogoliubov-Duhamel inner product. The novel feature is that, under sufficiently mild conditions, the upper bounds have the same form and order of magnitude with respect to N for all the quantities derived by a finite number of commutations of an original intensive observable with the Hamiltonian. The results are illustrated on two types of exactly solvable model systems: one with bounded separable attraction and the other containing interactionof a boson field with matter. Отримано нескiнченнi набори нерiвностей, якi узагальнюють всi вiдомi нерiвностi, що можуть бути використанi на етапi мажорування методу апроксимуючого гамiльтонiану Вони забезпечують верхнi границi на рiзницю мiж квадратичними флуктуацiями iнтенсивних спостережуваних N-частинкової системи i вiдповiдного внутрiшнього добутку Боголюбова-Дюамеля. Новою рисою є те, що при достатньо м’яких умовах верхнi границi мають однакову форму i порядок величини по вiдношенню до N для всiх величин, отриманих шляхом скiнченного числа перестановок початкової iнтенсивої спостережуваної з гамiльтонiаном. Результати iлюструються на двох типахточно розв’язуваних моделей: однi є iз обмеженим сепарабельним притяганням та iншої, що мiстить взаємодiю бозонного поля з матерiєю. 2011 Article Generalized inequalities for the Bogoliubov-Duhamel inner product with applications in the Approximating Hamiltonian Method / J.G. Brankov, N.S. Tonchev // Condensed Matter Physics. — 2011. — Т. 14, № 1. — С. 13003: 1-17. — Бібліогр.: 37 назв. — англ. 1607-324X PACS: 05.30.Rt, 64.60.-i, 64.60.De, 64.70.Tg DOI:10.5488/CMP.14.13003 arXiv:1101.2882 http://dspace.nbuv.gov.ua/handle/123456789/119901 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Infinite sets of inequalities which generalize all the known inequalities that can be used in the majorization step of the Approximating Hamiltonian method are derived. They provide upper bounds on the difference between the quadratic fluctuations of intensive observables of a N -particle system and the corresponding Bogoliubov-Duhamel inner product. The novel feature is that, under sufficiently mild conditions, the upper bounds have the same form and order of magnitude with respect to N for all the quantities derived by a finite number of commutations of an original intensive observable with the Hamiltonian. The results are illustrated on two types of exactly solvable model systems: one with bounded separable attraction and the other containing interactionof a boson field with matter.
format Article
author Brankov, J.G.
Tonchev, N.S.
spellingShingle Brankov, J.G.
Tonchev, N.S.
Generalized inequalities for the Bogoliubov-Duhamel inner product with applications in the Approximating Hamiltonian Method
Condensed Matter Physics
author_facet Brankov, J.G.
Tonchev, N.S.
author_sort Brankov, J.G.
title Generalized inequalities for the Bogoliubov-Duhamel inner product with applications in the Approximating Hamiltonian Method
title_short Generalized inequalities for the Bogoliubov-Duhamel inner product with applications in the Approximating Hamiltonian Method
title_full Generalized inequalities for the Bogoliubov-Duhamel inner product with applications in the Approximating Hamiltonian Method
title_fullStr Generalized inequalities for the Bogoliubov-Duhamel inner product with applications in the Approximating Hamiltonian Method
title_full_unstemmed Generalized inequalities for the Bogoliubov-Duhamel inner product with applications in the Approximating Hamiltonian Method
title_sort generalized inequalities for the bogoliubov-duhamel inner product with applications in the approximating hamiltonian method
publisher Інститут фізики конденсованих систем НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/119901
citation_txt Generalized inequalities for the Bogoliubov-Duhamel inner product with applications in the Approximating Hamiltonian Method / J.G. Brankov, N.S. Tonchev // Condensed Matter Physics. — 2011. — Т. 14, № 1. — С. 13003: 1-17. — Бібліогр.: 37 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT brankovjg generalizedinequalitiesforthebogoliubovduhamelinnerproductwithapplicationsintheapproximatinghamiltonianmethod
AT tonchevns generalizedinequalitiesforthebogoliubovduhamelinnerproductwithapplicationsintheapproximatinghamiltonianmethod
first_indexed 2023-10-18T20:35:41Z
last_indexed 2023-10-18T20:35:41Z
_version_ 1796150609924063232