Analytic and numerical study of a hierarchical spin model
A simple hierarchical scalar spin model is studied analytically and numerically in the vicinity of its critical point. The dependence of the finite size (i.e. calculated for a large but finite number of spins) susceptibility and the location of zeros of the model partition function on the number of s...
Збережено в:
Дата: | 1999 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
1999
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/119923 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Analytic and numerical study of a hierarchical spin model / Yu. Kozitsky, M. Kozlovskii, T. Krokhmalskii // Condensed Matter Physics. — 1999. — Т. 2, № 1(17). — С. 15-36. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | A simple hierarchical scalar spin model is studied analytically and numerically in the vicinity of its critical point. The dependence of the finite size (i.e.
calculated for a large but finite number of spins) susceptibility and the location of zeros of the model partition function on the number of spins at the
critical point is described analytically. It is also shown analytically that the
finite size correlation length in such a model diverges at the critical point
slower than it is supposed in the finite size scaling theory. Certain numerical
information about the critical point and ordered phase is given. In particular, the critical temperature of the model and the critical index describing
the order parameter are calculated for various values of the interaction parameter. |
---|