Analytic and numerical study of a hierarchical spin model

A simple hierarchical scalar spin model is studied analytically and numerically in the vicinity of its critical point. The dependence of the finite size (i.e. calculated for a large but finite number of spins) susceptibility and the location of zeros of the model partition function on the number of s...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:1999
Автори: Kozitsky, Yu., Kozlovskii, M., Krokhmalskii, T.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 1999
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/119923
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Analytic and numerical study of a hierarchical spin model / Yu. Kozitsky, M. Kozlovskii, T. Krokhmalskii // Condensed Matter Physics. — 1999. — Т. 2, № 1(17). — С. 15-36. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:A simple hierarchical scalar spin model is studied analytically and numerically in the vicinity of its critical point. The dependence of the finite size (i.e. calculated for a large but finite number of spins) susceptibility and the location of zeros of the model partition function on the number of spins at the critical point is described analytically. It is also shown analytically that the finite size correlation length in such a model diverges at the critical point slower than it is supposed in the finite size scaling theory. Certain numerical information about the critical point and ordered phase is given. In particular, the critical temperature of the model and the critical index describing the order parameter are calculated for various values of the interaction parameter.