Generalized Fokker-Planck equation and its solution for linear non-Markovian Gaussian systems

In this paper we suggest a consistent approach to derivation of generalized Fokker-Planck equation (GFPE) for Gaussian non-Markovian processes with stationary increments. This approach allows us to construct the probability density function (PDF) without a need to solve the GFPE. We employ our metho...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автор: Sliusarenko, O.Yu.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2011
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/119976
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Generalized Fokker-Planck equation and its solution for linear non-Markovian Gaussian systems / O.Yu. Sliusarenko // Condensed Matter Physics. — 2011. — Т. 14, № 2. — С. 23002:1-14. — Бібліогр.: 37 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:In this paper we suggest a consistent approach to derivation of generalized Fokker-Planck equation (GFPE) for Gaussian non-Markovian processes with stationary increments. This approach allows us to construct the probability density function (PDF) without a need to solve the GFPE. We employ our method to obtain the GFPE and PDFs for free generalized Brownian motion and the one in harmonic potential for the case of power-law correlation function of the noise. We prove the fact that the considered systems may be described with Einstein-Smoluchowski equation at high viscosity levels and long times. We also compare the results with those obtained by other authors. At last, we calculate PDF of thermodynamical work in the stochastic system which consists of a particle embedded in a harmonic potential moving with constant velocity, and check the work fluctuation theorem for such a system.