Extreme compression behaviour of higher derivative properties of solids based on the generalized Rydberg equation of state
We have derived formulations for the pressure derivatives of bulk modulus up to the third order and for higher order Gr¨uneisen parameters using the generalized free volume theory, and the generalized Rydberg equation of state. The properties derived in the present study are directly related to th...
Збережено в:
Дата: | 2009 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2009
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/119988 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Extreme compression behaviour of higher derivative properties of solids based on the generalized Rydberg equation of state / J. Shanker, B.P. Singh, K. Jitendra // Condensed Matter Physics. — 2009. — Т. 12, № 2. — С. 205-213. — Бібліогр.: 33 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We have derived formulations for the pressure derivatives of bulk modulus up to the third order and for higher
order Gr¨uneisen parameters using the generalized free volume theory, and the generalized Rydberg equation
of state. The properties derived in the present study are directly related to the understanding of thermoelastic
properties of solids. The third order Gr¨uneisen parameter (lambda λ) in the limit of in nite pressure has
been found to approach a positive finite value for lambda in nity (λ∞) equal to 1/3. This is a result shown
to be independent of the value of K-prime in nity, i. e., the pressure derivative of the bulk modulus at infinite
pressure. The results based on other equations of state have also been reported and discussed. We find a
relationship between λ∞ and pressure derivatives of bulk modulus at infinite pressure which is satisfied by
different types of equations of state. |
---|