Extreme compression behaviour of higher derivative properties of solids based on the generalized Rydberg equation of state

We have derived formulations for the pressure derivatives of bulk modulus up to the third order and for higher order Gr¨uneisen parameters using the generalized free volume theory, and the generalized Rydberg equation of state. The properties derived in the present study are directly related to th...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автори: Shanker, J., Singh, B.P., Jitendra, K.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2009
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/119988
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Extreme compression behaviour of higher derivative properties of solids based on the generalized Rydberg equation of state / J. Shanker, B.P. Singh, K. Jitendra // Condensed Matter Physics. — 2009. — Т. 12, № 2. — С. 205-213. — Бібліогр.: 33 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-119988
record_format dspace
spelling irk-123456789-1199882017-06-11T03:04:44Z Extreme compression behaviour of higher derivative properties of solids based on the generalized Rydberg equation of state Shanker, J. Singh, B.P. Jitendra, K. We have derived formulations for the pressure derivatives of bulk modulus up to the third order and for higher order Gr¨uneisen parameters using the generalized free volume theory, and the generalized Rydberg equation of state. The properties derived in the present study are directly related to the understanding of thermoelastic properties of solids. The third order Gr¨uneisen parameter (lambda λ) in the limit of in nite pressure has been found to approach a positive finite value for lambda in nity (λ∞) equal to 1/3. This is a result shown to be independent of the value of K-prime in nity, i. e., the pressure derivative of the bulk modulus at infinite pressure. The results based on other equations of state have also been reported and discussed. We find a relationship between λ∞ and pressure derivatives of bulk modulus at infinite pressure which is satisfied by different types of equations of state. Ми отримали формулювання для похiдних третього порядку за тиском вiд об’ємних модулiв i для параметрiв Грюнайзена вищого порядку, використовуючи узагальнену теорiю вiльного об’єму та узагальнене рiвняння стану Рiдберга. Отриманi властивостi є безпосередньо пов’язаними iз розумiнням термоелектричних властивостей твердих тiл. Показано, що параметр Грюнайзена третього порядку (λ) в границi нескiнченного тиску (λ∞) наближається до скiнченного позитивного значення, рiвного 1/3. Показано, що цей результат не залежить вiд значення похiдної за тиском вiд об’ємного модуля при нескiнченному тиску. Також обговорюються результати, отриманi на основi iнших рiвнянь стану. Ми знайшли спiввiдношення, що зв’язує λ∞ та похiднi за тиском вiд об’ємних модулiв при нескiнченному тиску, яке задовольняється для рiзних типiв рiвнянь стану. 2009 Article Extreme compression behaviour of higher derivative properties of solids based on the generalized Rydberg equation of state / J. Shanker, B.P. Singh, K. Jitendra // Condensed Matter Physics. — 2009. — Т. 12, № 2. — С. 205-213. — Бібліогр.: 33 назв. — англ. 1607-324X PACS: 65, 64.10.+h, 91.60.Fe, 46.25.4f, 62.20.D, 81.40.Jj, 62.50.-p DOI:10.5488/CMP.12.2.205 http://dspace.nbuv.gov.ua/handle/123456789/119988 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We have derived formulations for the pressure derivatives of bulk modulus up to the third order and for higher order Gr¨uneisen parameters using the generalized free volume theory, and the generalized Rydberg equation of state. The properties derived in the present study are directly related to the understanding of thermoelastic properties of solids. The third order Gr¨uneisen parameter (lambda λ) in the limit of in nite pressure has been found to approach a positive finite value for lambda in nity (λ∞) equal to 1/3. This is a result shown to be independent of the value of K-prime in nity, i. e., the pressure derivative of the bulk modulus at infinite pressure. The results based on other equations of state have also been reported and discussed. We find a relationship between λ∞ and pressure derivatives of bulk modulus at infinite pressure which is satisfied by different types of equations of state.
format Article
author Shanker, J.
Singh, B.P.
Jitendra, K.
spellingShingle Shanker, J.
Singh, B.P.
Jitendra, K.
Extreme compression behaviour of higher derivative properties of solids based on the generalized Rydberg equation of state
Condensed Matter Physics
author_facet Shanker, J.
Singh, B.P.
Jitendra, K.
author_sort Shanker, J.
title Extreme compression behaviour of higher derivative properties of solids based on the generalized Rydberg equation of state
title_short Extreme compression behaviour of higher derivative properties of solids based on the generalized Rydberg equation of state
title_full Extreme compression behaviour of higher derivative properties of solids based on the generalized Rydberg equation of state
title_fullStr Extreme compression behaviour of higher derivative properties of solids based on the generalized Rydberg equation of state
title_full_unstemmed Extreme compression behaviour of higher derivative properties of solids based on the generalized Rydberg equation of state
title_sort extreme compression behaviour of higher derivative properties of solids based on the generalized rydberg equation of state
publisher Інститут фізики конденсованих систем НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/119988
citation_txt Extreme compression behaviour of higher derivative properties of solids based on the generalized Rydberg equation of state / J. Shanker, B.P. Singh, K. Jitendra // Condensed Matter Physics. — 2009. — Т. 12, № 2. — С. 205-213. — Бібліогр.: 33 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT shankerj extremecompressionbehaviourofhigherderivativepropertiesofsolidsbasedonthegeneralizedrydbergequationofstate
AT singhbp extremecompressionbehaviourofhigherderivativepropertiesofsolidsbasedonthegeneralizedrydbergequationofstate
AT jitendrak extremecompressionbehaviourofhigherderivativepropertiesofsolidsbasedonthegeneralizedrydbergequationofstate
first_indexed 2023-10-18T20:35:58Z
last_indexed 2023-10-18T20:35:58Z
_version_ 1796150618829619200