Non-perturbation theory of electronic dynamic conductivity for two-barrier resonance tunnel nano-structure

The non-perturbation theory of electronic dynamic conductivity for open two-barrier resonance tunnel structure is established for the first time within the model of rect angular potentials and different effective masses of electrons in the elements of nano-structure and the wave function linear over...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Tkach, M.V., Seti, Ju.O., Voitsekhivska, O.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2011
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/120037
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Non-perturbation theory of electronic dynamic conductivity for two-barrier resonance tunnel nano-structure / M.V. Tkach, Ju.O. Seti, O.M. Voitsekhivska // Condensed Matter Physics. — 2011. — Т. 14, № 4. — С. 43702:1-10. — Бібліогр.: 24 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-120037
record_format dspace
spelling irk-123456789-1200372017-06-11T03:05:24Z Non-perturbation theory of electronic dynamic conductivity for two-barrier resonance tunnel nano-structure Tkach, M.V. Seti, Ju.O. Voitsekhivska, O.M. The non-perturbation theory of electronic dynamic conductivity for open two-barrier resonance tunnel structure is established for the first time within the model of rect angular potentials and different effective masses of electrons in the elements of nano-structure and the wave function linear over the intensity of electromagnetic field. It is proven that the results of the theory of dynamic co nductivity, developed earlier in weak signal approximation within the perturbation method, qualitatively and quantitatively correlate with the obtained results. The advantage of non-perturbation theory is that it can be extended to the case of electronic currents interacting with strong electromagnetic fields in open multi-shell reso nance tunnel nano-structures, as active elements of quantum cascade lasers and detectors. Вперше запропоновано непертурбацiйну теорiю електронної динамiчної провiдностi вiдкритої дво-бар’єрної резонансно-тунельної структури у моделi прямокутних потенцiалiв i рiзних ефективних мас електронiв у рiзних елементах наносистеми та з лiнiйною за напруженiстю електромагнiтного поля хвильовою функцiєю системи. Показано, що результати розвинутої ранiше теорiї динамiчної провiдностi у малосигнальному наближеннi (у межах теорiї збурень) якiсно i кiлькiсно корелюють з отриманими результатами. Переваги непертурбацiйної теорiї в тому, що вона може бути поширена на випадок взаємодiї потокiв електронiв з потужними електромагнiтними полями у вiдкритих багатошарових резонансно-тунельних наноструктурах, як активних елементах квантових каскадних лазерiв i детекторiв. 2011 Article Non-perturbation theory of electronic dynamic conductivity for two-barrier resonance tunnel nano-structure / M.V. Tkach, Ju.O. Seti, O.M. Voitsekhivska // Condensed Matter Physics. — 2011. — Т. 14, № 4. — С. 43702:1-10. — Бібліогр.: 24 назв. — англ. 1607-324X PACS: 73.21.Fg, 73.90.+f, 72.30.+q, 73.63.Hs DOI:10.5488/CMP.14.43702 arXiv:1202.4600 http://dspace.nbuv.gov.ua/handle/123456789/120037 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The non-perturbation theory of electronic dynamic conductivity for open two-barrier resonance tunnel structure is established for the first time within the model of rect angular potentials and different effective masses of electrons in the elements of nano-structure and the wave function linear over the intensity of electromagnetic field. It is proven that the results of the theory of dynamic co nductivity, developed earlier in weak signal approximation within the perturbation method, qualitatively and quantitatively correlate with the obtained results. The advantage of non-perturbation theory is that it can be extended to the case of electronic currents interacting with strong electromagnetic fields in open multi-shell reso nance tunnel nano-structures, as active elements of quantum cascade lasers and detectors.
format Article
author Tkach, M.V.
Seti, Ju.O.
Voitsekhivska, O.M.
spellingShingle Tkach, M.V.
Seti, Ju.O.
Voitsekhivska, O.M.
Non-perturbation theory of electronic dynamic conductivity for two-barrier resonance tunnel nano-structure
Condensed Matter Physics
author_facet Tkach, M.V.
Seti, Ju.O.
Voitsekhivska, O.M.
author_sort Tkach, M.V.
title Non-perturbation theory of electronic dynamic conductivity for two-barrier resonance tunnel nano-structure
title_short Non-perturbation theory of electronic dynamic conductivity for two-barrier resonance tunnel nano-structure
title_full Non-perturbation theory of electronic dynamic conductivity for two-barrier resonance tunnel nano-structure
title_fullStr Non-perturbation theory of electronic dynamic conductivity for two-barrier resonance tunnel nano-structure
title_full_unstemmed Non-perturbation theory of electronic dynamic conductivity for two-barrier resonance tunnel nano-structure
title_sort non-perturbation theory of electronic dynamic conductivity for two-barrier resonance tunnel nano-structure
publisher Інститут фізики конденсованих систем НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/120037
citation_txt Non-perturbation theory of electronic dynamic conductivity for two-barrier resonance tunnel nano-structure / M.V. Tkach, Ju.O. Seti, O.M. Voitsekhivska // Condensed Matter Physics. — 2011. — Т. 14, № 4. — С. 43702:1-10. — Бібліогр.: 24 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT tkachmv nonperturbationtheoryofelectronicdynamicconductivityfortwobarrierresonancetunnelnanostructure
AT setijuo nonperturbationtheoryofelectronicdynamicconductivityfortwobarrierresonancetunnelnanostructure
AT voitsekhivskaom nonperturbationtheoryofelectronicdynamicconductivityfortwobarrierresonancetunnelnanostructure
first_indexed 2023-10-18T20:36:04Z
last_indexed 2023-10-18T20:36:04Z
_version_ 1796150625968324608