Hydrodynamic states of phonons in insulators

The Chapman-Enskog method is generalized for accounting the effect of kinetic modes on hydrodynamic evolution. Hydrodynamic states of phonon system of insulators have been studied in a small drift velocity approximation. For simplicity, the investigation was carried out for crystals of the cubic cla...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автор: Sokolovsky, S.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2012
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/120305
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Hydrodynamic states of phonons in insulators / S.A. Sokolovsky // Condensed Matter Physics. — 2012. — Т. 15, № 4. — С. 43007:1-10. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The Chapman-Enskog method is generalized for accounting the effect of kinetic modes on hydrodynamic evolution. Hydrodynamic states of phonon system of insulators have been studied in a small drift velocity approximation. For simplicity, the investigation was carried out for crystals of the cubic class symmetry. It has been found that in phonon hydrodynamics, local equilibrium is violated even in the approximation linear in velocity. This is due to the absence of phonon momentum conservation law that leads to a drift velocity relaxation. Phonon hydrodynamic equations which take dissipative processes into account have been obtained. The results were compared with the standard theory based on the local equilibrium validity. Integral equations have been obtained for calculating the objects of the theory (including viscosity and heat conductivity). It has been shown that in low temperature limit, these equations are solvable by iterations. Steady states of the system have been considered and an expression for steady state heat conductivity has been obtained. It coincides with the famous result by Akhiezer in the leading low temperature approximation. It has been established that temperature distribution in the steady state of insulator satisfies a condition of heat source absence.