Recent developments in classical density functional theory: Internal energy functional and diagrammatic structure of fundamental measure theory

An overview of several recent developments in density functional theory for classical inhomogeneous liquids is given. We show how Levy's constrained search method can be used to derive the variational principle that underlies density functional theory. An advantage of the method is that the Hel...

Повний опис

Збережено в:
Бібліографічні деталі
Видавець:Інститут фізики конденсованих систем НАН України
Дата:2012
Автори: Schmidt, M., Burgis, M., Dwandaru, W.S.B., Leithall, G., Hopkin, P.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2012
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/120308
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Цитувати:Recent developments in classical density functional theory: Internal energy functional and diagrammatic structure of fundamental measure theory / M. Schmidt, M. Burgis, W.S.B. Dwandar, G. Leithall, P. Hopkins // Condensed Matter Physics. — 2012. — Т. 15, № 4. — С. 43603:1-15. — Бібліогр.: 65 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:An overview of several recent developments in density functional theory for classical inhomogeneous liquids is given. We show how Levy's constrained search method can be used to derive the variational principle that underlies density functional theory. An advantage of the method is that the Helmholtz free energy as a functional of a trial one-body density is given as an explicit expression, without reference to an external potential as is the case in the standard Mermin-Evans proof by reductio ad absurdum. We show how to generalize the approach in order to express the internal energy as a functional of the one-body density distribution and of the local entropy distribution. Here the local chemical potential and the bulk temperature play the role of Lagrange multipliers in the Euler-Lagrange equations for minimiziation of the functional. As an explicit approximation for the free-energy functional for hard sphere mixtures, the diagrammatic structure of Rosenfeld's fundamental measure density functional is laid out. Recent extensions, based on the Kierlik-Rosinberg scalar weight functions, to binary and ternary non-additive hard sphere mixtures are described.