Fermi liquid properties of ³He –⁴He mixtures
We calculate microscopically the properties of ³He impurity atoms in ³He-⁴He mixtures, including the spectrum of a single particle and the Fermi–Liquid interaction between ³He atoms. From these, we determine the pressure and concentration dependence of the effective mass and the magnetic susceptibi...
Збережено в:
Дата: | 1999 |
---|---|
Автори: | , , , , |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
1999
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/120386 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Fermi liquid properties of ³He –⁴He mixtures / K. Scho, E. Krotscheck, J. Paaso, M. Saarela, R. Zillich // Condensed Matter Physics. — 1999. — Т. 2, № 2(18). — С. 319-328. — Бібліогр.: 19 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We calculate microscopically the properties of ³He impurity atoms in ³He-⁴He mixtures, including the spectrum of a single particle and the Fermi–Liquid interaction between ³He atoms. From these, we determine the pressure and concentration dependence of the effective mass and the magnetic
susceptibility. The long wavelength limit of the single–particle spectrum defines the hydrodynamic effective mass. When k >= 1.7A⁻¹ the motion of the
impurity is damped due to the decay into a roton and a low energy impurity
mode. The calculations of the Fermi–Liquid interaction are based on correlated basis functions (CBF) perturbation theory; the relevant matrix elements are determined by the Fermi hypernetted–chain summation method.
Our theoretical effective masses agree well with recent measurements [1,2]
but our analysis suggests a new extrapolation to the zero-concentration
limit. With that effective mass we also find a good agreement with the measured [3] Landau parameter F a ₀ |
---|