Statistics of linear polymer chains in the self-avoiding walks model

A strict statistics of self avoiding random walks in d-dimensional discrete (lattice) and continuous space is proposed. Asymptotic analytical expressions for the distribution and distribution density of corresponding random values characterizing a conformational state of polymer chain have been...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2001
Автор: Medvedevskikh, Yu.G.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2001
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/120427
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Statistics of linear polymer chains in the self-avoiding walks model / Yu.G. Medvedevskikh // Condensed Matter Physics. — 2001. — Т. 4, № 2(26). — С. 209-218. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:A strict statistics of self avoiding random walks in d-dimensional discrete (lattice) and continuous space is proposed. Asymptotic analytical expressions for the distribution and distribution density of corresponding random values characterizing a conformational state of polymer chain have been obtained and their quantitative estimation has been given. It is shown that conformation of polymer chain possesses a structure of spherical or, more commonly, of elliptical shell diffusely blurred both outside and inside the polymer coil, which nucleus is statistically void and has a radius of about half of Flory radius. Statistics of self-avoiding walks describes completely an effect of excluded volume and meets the terms of Flory method in Pietronero’s concepti.