Thermodynamics of conformation and deformation of linear polymeric chains in solution
Thermodynamics of conformation and deformation of linear polymeric chains in a solution is built based on the statistics of self-avoiding walks. The entropy and free energy of conformation of a polymeric chain is presented as a sum of two terms. The first one takes into account the contribution...
Збережено в:
Дата: | 2001 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2001
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/120431 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Thermodynamics of conformation and deformation of linear polymeric chains in solution / Yu.G. Medvedevskikh // Condensed Matter Physics. — 2001. — Т. 4, № 2(26). — С. 219-233. — Бібліогр.: 9 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Thermodynamics of conformation and deformation of linear polymeric
chains in a solution is built based on the statistics of self-avoiding walks.
The entropy and free energy of conformation of a polymeric chain is presented
as a sum of two terms. The first one takes into account the contribution
of random walk and the second one takes into account the contribution
of two limitations, which covered random walk and create the effect of
self-organization of a polymeric chain. Deformation of the polymeric chain
is considered as an equilibrious transition of Flory ball into conformational
ellipsoid. The expressions for thermodynamic and elastic properties of
the polymeric chain as functions of the degree of its deformation are suggested.
Volumetric module, Young’s module and module of polymeric chain
shift are expressed through the pressure of conformation; Poisson’s ratio
depends only upon the dimension of Euclidean space. Forces and work of
deformation are determined; the method of calculating the main tensions
is suggested. |
---|