On the critical behaviour of random anisotropy magnets: cubic anisotropy
The critical behaviour of an m -vector model with a local anisotropy axis of random orientation is studied within the field-theoretical renormalization group approach for cubic distribution of anisotropy axis. Expressions for the renormalization group functions are calculated up to the two-loop o...
Збережено в:
Дата: | 2001 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2001
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/120456 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On the critical behaviour of random anisotropy magnets: cubic anisotropy / M. Dudka, R. Folk, Yu. Holovatch // Condensed Matter Physics. — 2001. — Т. 4, № 3(27). — С. 459-472. — Бібліогр.: 26 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The critical behaviour of an m -vector model with a local anisotropy axis
of random orientation is studied within the field-theoretical renormalization
group approach for cubic distribution of anisotropy axis. Expressions for
the renormalization group functions are calculated up to the two-loop order
and investigated both by an ε = 4 − d expansion and directly at space dimension
d = 3 by means of the Pade-Borel resummation. One accessible ´
stable fixed point indicating a 2nd order ferromagnetic phase transition with
dilute Ising-like critical exponents is obtained. |
---|