Non-Gaussian behaviour of a self-propelled particle on a substrate

The overdamped Brownian motion of a self-propelled particle which is driven by a projected internal force is studied by solving the Langevin equation analytically. The active particle under study is restricted to move along a linear channel. The direction of its internal force is orientationally...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автори: ten Hagen, B., van Teeffelen, S., Löwen, H.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2009
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/120556
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Non-Gaussian behaviour of a self-propelled particle on a substrate / B. ten Hagen, S. van Teeffelen, H. Löwen // Condensed Matter Physics. — 2009. — Т. 12, № 4. — С. 725-738. — Бібліогр.: 42 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-120556
record_format dspace
spelling irk-123456789-1205562017-06-13T03:05:54Z Non-Gaussian behaviour of a self-propelled particle on a substrate ten Hagen, B. van Teeffelen, S. Löwen, H. The overdamped Brownian motion of a self-propelled particle which is driven by a projected internal force is studied by solving the Langevin equation analytically. The active particle under study is restricted to move along a linear channel. The direction of its internal force is orientationally diffusing on a unit circle in a plane perpendicular to the substrate. An additional time-dependent torque is acting on the internal force orientation. The model is relevant for active particles like catalytically driven Janus particles and bacteria moving on a substrate. Analytical results for the rst four time-dependent displacement moments are presented and analysed for several special situations. For a vanishing torque, there is a significant dynamical non-Gaussian behaviour at finite times t as signalled by a non-vanishing normalized kurtosis in the particle displacement which approaches zero for long time with a 1/t long-time tail. На основi знаходження аналiтичного розв’язку рiвняння Ланжевена дослiджується згасаючий броунiвський рух самохiдної частинки, що керується вiдпроектованою внутрiшньою силою. Рух такої “активної” частинки обмежується вздовж лiнiйного каналу, а напрямок внутрiшньої сили, що дiє на неї, орiєнтацiйно дифундує на одиничному колi в площинi, перпендикулярнiй до субстрату. Додатковий залежний вiд часу момент сили також впливає на орiєнтацiю внутрiшньої сили. Така модель є актуальною для активних частинок на кшталт каталiтично керованих частинок Януса або ж бактерiй, що рухаються на поверхнi субстрату. Для чотирьох перших моментiв змiщення частинки отримано аналiтичнi результати, якi аналiзуються для кiлькох спецiальних ситуацiй. Для моменту сил, що прямує до нуля, спостерiгається цiкава негаусова динамiчна поведiнка при скiнчених часах t, про що сигналiзує незникаюча величина нормалiзованого коефiцiєнта ексцесу , який спадає як 1/t при великих часах. 2009 Article Non-Gaussian behaviour of a self-propelled particle on a substrate / B. ten Hagen, S. van Teeffelen, H. Löwen // Condensed Matter Physics. — 2009. — Т. 12, № 4. — С. 725-738. — Бібліогр.: 42 назв. — англ. 1607-324X PACS: 82.70.Dd, 05.40.Jc DOI:10.5488/CMP.12.4.725 http://dspace.nbuv.gov.ua/handle/123456789/120556 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The overdamped Brownian motion of a self-propelled particle which is driven by a projected internal force is studied by solving the Langevin equation analytically. The active particle under study is restricted to move along a linear channel. The direction of its internal force is orientationally diffusing on a unit circle in a plane perpendicular to the substrate. An additional time-dependent torque is acting on the internal force orientation. The model is relevant for active particles like catalytically driven Janus particles and bacteria moving on a substrate. Analytical results for the rst four time-dependent displacement moments are presented and analysed for several special situations. For a vanishing torque, there is a significant dynamical non-Gaussian behaviour at finite times t as signalled by a non-vanishing normalized kurtosis in the particle displacement which approaches zero for long time with a 1/t long-time tail.
format Article
author ten Hagen, B.
van Teeffelen, S.
Löwen, H.
spellingShingle ten Hagen, B.
van Teeffelen, S.
Löwen, H.
Non-Gaussian behaviour of a self-propelled particle on a substrate
Condensed Matter Physics
author_facet ten Hagen, B.
van Teeffelen, S.
Löwen, H.
author_sort ten Hagen, B.
title Non-Gaussian behaviour of a self-propelled particle on a substrate
title_short Non-Gaussian behaviour of a self-propelled particle on a substrate
title_full Non-Gaussian behaviour of a self-propelled particle on a substrate
title_fullStr Non-Gaussian behaviour of a self-propelled particle on a substrate
title_full_unstemmed Non-Gaussian behaviour of a self-propelled particle on a substrate
title_sort non-gaussian behaviour of a self-propelled particle on a substrate
publisher Інститут фізики конденсованих систем НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/120556
citation_txt Non-Gaussian behaviour of a self-propelled particle on a substrate / B. ten Hagen, S. van Teeffelen, H. Löwen // Condensed Matter Physics. — 2009. — Т. 12, № 4. — С. 725-738. — Бібліогр.: 42 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT tenhagenb nongaussianbehaviourofaselfpropelledparticleonasubstrate
AT vanteeffelens nongaussianbehaviourofaselfpropelledparticleonasubstrate
AT lowenh nongaussianbehaviourofaselfpropelledparticleonasubstrate
first_indexed 2023-10-18T20:37:20Z
last_indexed 2023-10-18T20:37:20Z
_version_ 1796150681985351680