Quantum effects in an anharmonic crystal

A model of quantum particles performing D -dimensional anharmonic oscillations around their equilibrium positions which form the d -dimensional simple cubic lattice Zd is considered. The model undergoes a structural phase transition when the fluctuations of displacements of particles become macr...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2002
Автор: Kozitsky, Yu.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2002
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/120681
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Quantum effects in an anharmonic crystal / Yu. Kozitsky // Condensed Matter Physics. — 2002. — Т. 5, № 4(32). — С. 601-616. — Бібліогр.: 41 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-120681
record_format dspace
spelling irk-123456789-1206812017-06-13T03:03:43Z Quantum effects in an anharmonic crystal Kozitsky, Yu. A model of quantum particles performing D -dimensional anharmonic oscillations around their equilibrium positions which form the d -dimensional simple cubic lattice Zd is considered. The model undergoes a structural phase transition when the fluctuations of displacements of particles become macroscopic. This phenomenon is described by susceptibilities depending on Matsubara frequencies ωn , n ∈ Z . We prove two theorems concerning the thermodynamic limits of these susceptibilities. The first theorem states that the susceptibilities with nonzero ωn remain bounded at all temperatures, which means that the macroscopic fluctuations in the model are always non-quantum. The second theorem gives a sufficient condition for the static susceptibility (i.e. corresponding to ωn = 0 ) to be bounded at all temperatures. This condition involves the particle mass, the anharmonicity parameters and the interaction intensity. The physical meaning of this result is that, for all D and all values of the temperature, strong quantum effects suppress critical points and the long range order. The proof is performed in the approach where the susceptibilities are represented as functional integrals. A brief description of the main features of this approach is delivered. Розглядається модель квантових частинок, які виконують D -вимірні коливання довкола їх положень рівноваги, що утворюють d -вимірну просту кубічну ґратку Zd . Ця модель зазнає фазового переходу, коли флуктуації зміщень частинок стають макроскопічними. Таке явище описується сприйнятливостями, залежними від мацубарівських частот ωn , n є Z . Ми доводимо дві теореми, що описують термодинамічні властивості цих сприйнятливостей. Перша теорема стверджує, що сприйнятливості з ненульовими ωn залишаються обмеженими при всіх температурах, а це означає, що макроскопічні флуктуації в даній моделі є завжди неквантові. Друга теорема дає достатню умову на те, щоб і статична сприйнятливість (яка відповідає ωn = 0 ) теж була обмеженою при всіх температурах. Ця умова включає в себе масу частинки, параметри ангармонізму та інтенсивність взаємодії. Фізичний сенс цього результату полягає в тому, що для всіх D і для всіх значень температури сильні квантові ефекти унеможливлюють виникнення критичних точок і далекого порядку. Доведення проводиться в рамках підходу, у якому сприйнятливості представляються за допомогою функціональних інтегралів. Дається короткий опис головних аспектів цього підходу. 2002 Article Quantum effects in an anharmonic crystal / Yu. Kozitsky // Condensed Matter Physics. — 2002. — Т. 5, № 4(32). — С. 601-616. — Бібліогр.: 41 назв. — англ. 1607-324X PACS: 05.50.-d, 64.60.-i DOI:10.5488/CMP.5.4.601 http://dspace.nbuv.gov.ua/handle/123456789/120681 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A model of quantum particles performing D -dimensional anharmonic oscillations around their equilibrium positions which form the d -dimensional simple cubic lattice Zd is considered. The model undergoes a structural phase transition when the fluctuations of displacements of particles become macroscopic. This phenomenon is described by susceptibilities depending on Matsubara frequencies ωn , n ∈ Z . We prove two theorems concerning the thermodynamic limits of these susceptibilities. The first theorem states that the susceptibilities with nonzero ωn remain bounded at all temperatures, which means that the macroscopic fluctuations in the model are always non-quantum. The second theorem gives a sufficient condition for the static susceptibility (i.e. corresponding to ωn = 0 ) to be bounded at all temperatures. This condition involves the particle mass, the anharmonicity parameters and the interaction intensity. The physical meaning of this result is that, for all D and all values of the temperature, strong quantum effects suppress critical points and the long range order. The proof is performed in the approach where the susceptibilities are represented as functional integrals. A brief description of the main features of this approach is delivered.
format Article
author Kozitsky, Yu.
spellingShingle Kozitsky, Yu.
Quantum effects in an anharmonic crystal
Condensed Matter Physics
author_facet Kozitsky, Yu.
author_sort Kozitsky, Yu.
title Quantum effects in an anharmonic crystal
title_short Quantum effects in an anharmonic crystal
title_full Quantum effects in an anharmonic crystal
title_fullStr Quantum effects in an anharmonic crystal
title_full_unstemmed Quantum effects in an anharmonic crystal
title_sort quantum effects in an anharmonic crystal
publisher Інститут фізики конденсованих систем НАН України
publishDate 2002
url http://dspace.nbuv.gov.ua/handle/123456789/120681
citation_txt Quantum effects in an anharmonic crystal / Yu. Kozitsky // Condensed Matter Physics. — 2002. — Т. 5, № 4(32). — С. 601-616. — Бібліогр.: 41 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT kozitskyyu quantumeffectsinananharmoniccrystal
first_indexed 2023-10-18T20:37:36Z
last_indexed 2023-10-18T20:37:36Z
_version_ 1796150693622448128