Statistical mechanics in a discrete space-time. Thermodynamics and time-irreversibility

The introduction of a discrete space-time represents an attempt to describe the physics at the Planck’s scale. We show that this concept can be also very useful in describing thermodynamics in a pre-relativistic world. From this concept a new approach of statistical mechanics based on a dynamic...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2003
Автор: Badiali, J.P.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2003
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/120756
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Statistical mechanics in a discrete space-time. Thermodynamics and time-irreversibility / J.P. Badiali // Condensed Matter Physics. — 2003. — Т. 6, № 3(35). — С. 375-386. — Бібліогр.: 19 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The introduction of a discrete space-time represents an attempt to describe the physics at the Planck’s scale. We show that this concept can be also very useful in describing thermodynamics in a pre-relativistic world. From this concept a new approach of statistical mechanics based on a dynamic viewpoint and an entropy representation is presented. The entropy is connected with the counting of the paths in space-time. It contains a time interval that represents the time that we have to wait in order to relax the quantum fluctuations and to reach the thermal regime. It is shown that this time is β~ . The mathematical expressions we derive for thermal quantities like the entropy and the free energy are identical to those obtained by the traditional path-integral formalism starting from the canonical form of the thermal density matrix. However, the introduction of a quantized spacetime shows that thermodynamics is consistent with an equation of motion that is time-irreversible at a microscopic level. As a consequence, the problem of irreversibility is revisited and the derivation of a H-theorem becomes possible in the future