Spin-polarized electron tunneling between charge-density-wave metals
For junctions between metals partially gapped by charge density waves (CDWs), the quasiparticle tunnel currents J(V) and conductances G(V) in external magnetic fields H are calculated as functions of H, the bias voltage V, temperature T, the dielectric gaps ∑, and the gapped portions μ of the Fermi...
Збережено в:
Дата: | 2005 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2005
|
Назва видання: | Физика низких температур |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/120777 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Spin-polarized electron tunneling between charge-density-wave metals / T. Ekino, A.M. Gabovich, and A.I. Voitenko // Физика низких температур. — 2005. — Т. 31, № 1. — С. 77-93. — Бібліогр.: 93 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | For junctions between metals partially gapped by charge density waves (CDWs), the quasiparticle tunnel currents J(V) and conductances G(V) in external magnetic fields H are calculated as functions of H, the bias voltage V, temperature T, the dielectric gaps ∑, and the gapped portions
μ of the Fermi surface (FS). The paramagnetic effect of H is taken into account, whereas orbital
effects are neglected. General expressions are obtained for different CDW metal electrodes.
Analytical formulas are obtained for T = 0. Explicit numerical calculations are carried out for symmetrical
junctions. The results are substantially unlike those for junctions between superconductors.
It is shown that due to the interplay between quasiparticles from nested and non-nested FS
sections the junction properties involve features appropriate to both symmetrical and asymmetrical
setups. In particular, for H = 0 discontinuities at eV = ±2∑ and square-root singularities at eV = ±∑
should coexist. Here e is the elementary charge. For H ≠ 0 the former remain intact, while the latter
split. It is suggested to use the splitting as a verification of the CDW nature of the pseudogap
in high-Tc superconducting oxides. |
---|