A current algebra approach to the equilibrium classical statistical mechanics and its applications
The non-relativistic current algebra approach is analyzed subject to its application to studying the distribution functions of many-particle systems at the temperature equilibrium and their stability properties. We show that the classical Bogolubov generating functional method is a very effective to...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2013
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/120805 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A current algebra approach to the equilibrium classical statistical mechanics and its applications / N. Bogolubov, A. Prykarpatsky // Condensed Matter Physics. — 2013. — Т. 16, № 2. — С. 23702:1-13. — Бібліогр.: 18 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The non-relativistic current algebra approach is analyzed subject to its application to studying the distribution functions of many-particle systems at the temperature equilibrium and their stability properties. We show that the classical Bogolubov generating functional method is a very effective tool for constructing the irreducible current algebra representations and the corresponding different generalized measure expansions including collective variables transform. The effective Hamiltonian operator construction and its spectrum peculiarities subject to the stability of equilibrium many-particle systems are discussed. |
---|