A new critical exponent 'coppa' and its logarithmic counterpart 'hat coppa'
It is well known that standard hyperscaling breaks down above the upper critical dimension dc, where the critical exponents take on their Landau values. Here we show that this is because, in standard formulations in the thermodynamic limit, distance is measured on the correlation-length scale. Howev...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2013
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/120813 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A new critical exponent 'coppa' and its logarithmic counterpart 'hat coppa' / R. Kenna, B. Berche// Condensed Matter Physics. — 2013. — Т. 16, № 2. — С. 23601:1-12. — Бібліогр.: 46 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | It is well known that standard hyperscaling breaks down above the upper critical dimension dc, where the critical exponents take on their Landau values. Here we show that this is because, in standard formulations in the thermodynamic limit, distance is measured on the correlation-length scale. However, the correlation-length scale and the underlying length scale of the system are not the same at or above the upper critical dimension. Above dc they are related algebraically through a new critical exponent \coppa, while at dc they differ through logarithmic corrections governed by an exponent \hat{\coppa}. Taking proper account of these different length scales allows one to extend hyperscaling to all dimensions. |
---|