Phase transitions in the Potts model on complex networks

The Potts model is one of the most popular spin models of statistical physics. The prevailing majority of work done so far corresponds to the lattice version of the model. However, many natural or man-made systems are much better described by the topology of a network. We consider the q-state Potts...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Krasnytska, M., Berche, B., Holovatch, Yu.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2013
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/120814
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Phase transitions in the Potts model on complex networks / M. Krasnytska, B. Berche, Yu. Holovatch// Condensed Matter Physics. — 2013. — Т. 16, № 2. — С. 2:1-15. — Бібліогр.: 54 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The Potts model is one of the most popular spin models of statistical physics. The prevailing majority of work done so far corresponds to the lattice version of the model. However, many natural or man-made systems are much better described by the topology of a network. We consider the q-state Potts model on an uncorrelated scale-free network for which the node-degree distribution manifests a power-law decay governed by the exponent \lambda. We work within the mean-field approximation, since for systems on random uncorrelated scale-free networks this method is known often to give asymptotically exact results. Depending on particular values of q and \lambda one observes either a first-order or a second-order phase transition or the system is ordered at any finite temperature. In a case study, we consider the limit q=1 (percolation) and find a correspondence between the magnetic exponents and those describing percolation on a scale-free network. Interestingly, logarithmic corrections to scaling appear at \lambda=4 in this case.