Merging diabolical points of a superconducting circuit
We present the first theoretical study of the merging of diabolical points in the context of superconducting circuits. We begin by studying an analytically solvable four-level model which may serve as theoretical pattern for such a phenomenon. Then, we apply it to a circuit named Cooper pairs pump,...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2013
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/120818 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Merging diabolical points of a superconducting circuit / R. Leone, A. Monjou // Condensed Matter Physics. — 2013. — Т. 16, № 3. — С. 33801:1-11. — Бібліогр.: 41 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-120818 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1208182017-06-14T03:03:26Z Merging diabolical points of a superconducting circuit Leone, R. Monjou, A. We present the first theoretical study of the merging of diabolical points in the context of superconducting circuits. We begin by studying an analytically solvable four-level model which may serve as theoretical pattern for such a phenomenon. Then, we apply it to a circuit named Cooper pairs pump, whose diabolical points are already known. Представлено перше теоретичне вивчення злиття диявольських точок у застосунку до надпровiдних контурiв. Спочатку дослiджено аналiтично розв’язувану чотирирiвневу модель, яка може служити теоретичною основою такого явища. В подальшому ця модель застосовується до контура, який називають помпа куперiвських пар, з вiдомими диявольськими точками. 2013 Article Merging diabolical points of a superconducting circuit / R. Leone, A. Monjou // Condensed Matter Physics. — 2013. — Т. 16, № 3. — С. 33801:1-11. — Бібліогр.: 41 назв. — англ. 1607-324X PACS: 85.25.Cp, 74.50.+r, 74.78.Na, 03.67.-a DOI:10.5488/CMP.16.33801 arXiv:1111.3671 http://dspace.nbuv.gov.ua/handle/123456789/120818 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We present the first theoretical study of the merging of diabolical points in the context of superconducting circuits. We begin by studying an analytically solvable four-level model which may serve as theoretical pattern for such a phenomenon. Then, we apply it to a circuit named Cooper pairs pump, whose diabolical points are already known. |
format |
Article |
author |
Leone, R. Monjou, A. |
spellingShingle |
Leone, R. Monjou, A. Merging diabolical points of a superconducting circuit Condensed Matter Physics |
author_facet |
Leone, R. Monjou, A. |
author_sort |
Leone, R. |
title |
Merging diabolical points of a superconducting circuit |
title_short |
Merging diabolical points of a superconducting circuit |
title_full |
Merging diabolical points of a superconducting circuit |
title_fullStr |
Merging diabolical points of a superconducting circuit |
title_full_unstemmed |
Merging diabolical points of a superconducting circuit |
title_sort |
merging diabolical points of a superconducting circuit |
publisher |
Інститут фізики конденсованих систем НАН України |
publishDate |
2013 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/120818 |
citation_txt |
Merging diabolical points of a superconducting circuit / R. Leone, A. Monjou // Condensed Matter Physics. — 2013. — Т. 16, № 3. — С. 33801:1-11. — Бібліогр.: 41 назв. — англ. |
series |
Condensed Matter Physics |
work_keys_str_mv |
AT leoner mergingdiabolicalpointsofasuperconductingcircuit AT monjoua mergingdiabolicalpointsofasuperconductingcircuit |
first_indexed |
2023-10-18T20:38:13Z |
last_indexed |
2023-10-18T20:38:13Z |
_version_ |
1796150721087799296 |