Chemical capacitance proposed for manganite-based ceramics

The measured value of effective electric permittivity ϵeff of several compounds, e.g., (BiNa)(MnNb)O₃, (BiPb)(MnNb)O₃, and BiMnO₃ increases from a value ≅10÷100 at the low temperature range (100÷300 K) up to the high value reaching the value 10⁵ at high temperature range, e.g., 500÷800 K. Such featu...

Повний опис

Збережено в:
Бібліографічні деталі
Видавець:Інститут фізики конденсованих систем НАН України
Дата:2013
Автор: Molak, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2013
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/120828
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Цитувати:Chemical capacitance proposed for manganite-based ceramics / A. Molak // Condensed Matter Physics. — 2013. — Т. 16, № 3. — С. 31801:1-10. — Бібліогр.: 20 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The measured value of effective electric permittivity ϵeff of several compounds, e.g., (BiNa)(MnNb)O₃, (BiPb)(MnNb)O₃, and BiMnO₃ increases from a value ≅10÷100 at the low temperature range (100÷300 K) up to the high value reaching the value 10⁵ at high temperature range, e.g., 500÷800 K. Such features suggest the manifestation of thermally activated space charge carriers, which effect the measured capacitance. The measured high-value effective permittivity of several manganite compounds can be ascribed to the chemical capacitance Cμ=e² ∂Ni/∂μi expressed in terms of the chemical potential μ. The chemical capacitance Cμ(cb)=e² nC/kBT depends on temperature when the conduction electrons with density nC=NCexp(μn-EC)/kBT are considered. The experimental results obtained for the manganite compounds, at high temperature range, are discussed in the framework of the chemical capacitance model. However, the measured capacitance dependence on geometrical factors is analysed for BiMnO3 indicating that the non-homogeneous electrostatic capacitor model is valid in 300÷500 K range.