Size quantization in metal films

Quantum size effect, predicted by I.M. Lifshits and A.M. Kosevich [Izv. Akad. Nauk SSSR, seriya fiz. 19, 395 (1955)], was investigates in a many works. In the basis of analysis of quantum size oscillations of thermodynamics and kinetic characteristics of metal films lies the quasiclassical quantiz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2007
1. Verfasser: Nedorezov, S.S.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2007
Schriftenreihe:Физика низких температур
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/120936
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Size quantization in metal films / S.S. Nedorezov // Физика низких температур. — 2007. — Т. 33, № 09. — С. 1032–1035. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-120936
record_format dspace
spelling irk-123456789-1209362017-06-14T03:07:10Z Size quantization in metal films Nedorezov, S.S. International Conference "Statistical Physics 2006. Condensed Matter: Theory and Application" Quantum size effect, predicted by I.M. Lifshits and A.M. Kosevich [Izv. Akad. Nauk SSSR, seriya fiz. 19, 395 (1955)], was investigates in a many works. In the basis of analysis of quantum size oscillations of thermodynamics and kinetic characteristics of metal films lies the quasiclassical quantization of component of momentum for isotropy model and quantization [S.S. Nedorezov, Zh. Eksp. Teor. Fiz. 51, 868 (1966) [Sov. Phys.-JETF 24, 578 (1967)]] of chord of constant-energy surface in the case of anisotropy energetic spectrum. In the given work the research of quantum size levels of energy of electrons in metal films is carried out by the method of J.M. Luttinger–W.Kohn. The exact conditions of size quantization are got. 2007 Article Size quantization in metal films / S.S. Nedorezov // Физика низких температур. — 2007. — Т. 33, № 09. — С. 1032–1035. — Бібліогр.: 11 назв. — англ. 0132-6414 PACS: 71.61.–r, 71.15.Nc, 73.21.Fg http://dspace.nbuv.gov.ua/handle/123456789/120936 en Физика низких температур Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic International Conference "Statistical Physics 2006. Condensed Matter: Theory and Application"
International Conference "Statistical Physics 2006. Condensed Matter: Theory and Application"
spellingShingle International Conference "Statistical Physics 2006. Condensed Matter: Theory and Application"
International Conference "Statistical Physics 2006. Condensed Matter: Theory and Application"
Nedorezov, S.S.
Size quantization in metal films
Физика низких температур
description Quantum size effect, predicted by I.M. Lifshits and A.M. Kosevich [Izv. Akad. Nauk SSSR, seriya fiz. 19, 395 (1955)], was investigates in a many works. In the basis of analysis of quantum size oscillations of thermodynamics and kinetic characteristics of metal films lies the quasiclassical quantization of component of momentum for isotropy model and quantization [S.S. Nedorezov, Zh. Eksp. Teor. Fiz. 51, 868 (1966) [Sov. Phys.-JETF 24, 578 (1967)]] of chord of constant-energy surface in the case of anisotropy energetic spectrum. In the given work the research of quantum size levels of energy of electrons in metal films is carried out by the method of J.M. Luttinger–W.Kohn. The exact conditions of size quantization are got.
format Article
author Nedorezov, S.S.
author_facet Nedorezov, S.S.
author_sort Nedorezov, S.S.
title Size quantization in metal films
title_short Size quantization in metal films
title_full Size quantization in metal films
title_fullStr Size quantization in metal films
title_full_unstemmed Size quantization in metal films
title_sort size quantization in metal films
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2007
topic_facet International Conference "Statistical Physics 2006. Condensed Matter: Theory and Application"
url http://dspace.nbuv.gov.ua/handle/123456789/120936
citation_txt Size quantization in metal films / S.S. Nedorezov // Физика низких температур. — 2007. — Т. 33, № 09. — С. 1032–1035. — Бібліогр.: 11 назв. — англ.
series Физика низких температур
work_keys_str_mv AT nedorezovss sizequantizationinmetalfilms
first_indexed 2025-07-08T18:53:39Z
last_indexed 2025-07-08T18:53:39Z
_version_ 1837106014295425024
fulltext Fizika Nizkikh Temperatur, 2007, v. 33, No. 9, p. 1032–1035 Size quantization in metal films S.S. Nedorezov Kharkov National Automobile-road University, 25 Petrovskogo Str., Kharkov 610002, Ukraine E-mail:Eme-Tatyana@yandex.ru Receive January 29, 2007 Quantum size effect, predicted by I.M. Lifshits and A.M. Kosevich [Izv. Akad. Nauk SSSR, seriya fiz. 19, 395 (1955)], was investigates in a many works. In the basis of analysis of quantum size oscillations of ther- modynamics and kinetic characteristics of metal films lies the quasiclassical quantization of component of momentum for isotropy model and quantization [S.S. Nedorezov, Zh. Eksp. Teor. Fiz. 51, 868 (1966) [Sov. Phys.-JETF 24, 578 (1967)]] of chord of constant-energy surface in the case of anisotropy energetic spec- trum. In the given work the research of quantum size levels of energy of electrons in metal films is carried out by the method of J.M. Luttinger–W.Kohn. The exact conditions of size quantization are got. PACS: 71.61.–r Electrical properties of specific thin films; 71.15.Nc Total energy and cohesive energy calculations; 73.21.Fg Quantum wells. Keywords: band, chord, dispersion equation, oscillations. 1. The electronic energy spectrum of metallic film is determined by the Schrödinger equation of the electron in the periodic potential of crystal taking into account poten- tial U z( ), created by the border surface of film. On the condition a l L�� �� , (1) where a — distance between atoms, l — characteristic distance, on which the potential U z( ) changes substan- tially, L — thickness of a film with normal along the axis of z, the decision of given equation can be found by the method of Luttinger–Kohn [1] and approximate potential U z( ) by the infinitely deep potential pit. A similar method was used by an author at the analysis of size-quantum lev- els of energy in semiconductor films [2]. We suppose the decision of the Schrödinger equation in a kind �( , ) ( ) ( , )|| || ||x p x x|| z i F z u zs s s � � � � � � exp � 0 , (2) where x p|| ||( , ), ( , )� �x y p px y , � ( , / )||p p� �i d dz� , s — labeling the bands, u s0 — the Bloch function at the bot- tom of band Es in a point p � 0. Here the functions F zs( ) satisfy zero border condition and are the decision of the system of differential equations E p p m m d dz F zs x y s� � � � � � � � � � 2 2 2 2 22 2 � ( ) � � �� � � 1 m F z F z s s ss s s( � ) ( ) ( )p K � , (3) where K r rss s su i u d� �� � � � � � � � � ��� ( ) *2 3 0 0 3�� � � � (4) is the momentum matrix elements, � is the volume of the unit cell. The given decision is written down in a kind F z A i p zs sj zj j N ( ) exp� � � � � � � � 1 2 , (5) where N is number of the bands, p zj is roots of dispersion equation det | |( )||E m p m ps zj ss� � � �� 1 2 1 2 2 2� � � � � �� � �( )( ) | ||| ||p K ss zj zss ssp K 1 0� , (6) which can be by imaginaries. Amplitudes Asj are deter- mined by the homogeneous system of algebraic equations © S.S. Nedorezov, 2007 ( )||E m p m p As zj sj� � � � 1 2 1 2 2 2� � � � �� � � � ( )|| ||p K s s N ss zj zss s jp K A 0 . (7) The decision of equations (7) contains 2N arbitrary con- stants, s =1, 2, …, N; j =1, 2, …, 2N. Taking (5) into zero border condition , we get Blj j N � � 1 2 0, l N�1 2 2, , ..., ; (8) where B A l N A i p L N l N lj lj l N j zj � � � � � � � � � � � � � � � � � , , exp , ., 1 1 2 � � � � � � . (9) From (8) we get dispersion equation det| | | |Blj � 0, (10) which determines the quantum size levels of energy (subbands) � n ( )||p . 2. We will consider a model of two bands more in de- tail. In this case energy bands E p z1 2, ||( , )p have a kind E p E E p p m z z 1 2 1 2 2 2 2 2 , || || ( , )p � � � � � � E E m Kp z 2 1 2 2 2 1�� � � � � � �( )|| ||K p , (11) where K K|| || ,� 1 2, K K z� 1 2, . From (10), supposing N � 2, we get dispersion equation sin ( ) sin ( ) L p p L p p 2 2 2 1 4 3 � � � � � � � �W L p p L p psin ( ) sin ( ) 2 2 3 2 4 1 � � , (12) where p j is roots of equation E p j1 2, ||( , )p � �, j = 1, 2, 3, 4; (13) W � � � � � ( )( ) ( )( ) � � � � � � � � 4 3 2 1 4 1 3 2 , � � j j j m E p p Kp � � � � � 2 1 2 2( ) || || ||K p . (14) In the interval of energies e e2 3� �� and � � e4 (see Fig. 1) all roots have the material value. If | |W � 1 from dispersion equation (13) the condi- tions of quantization follow p p L n2 1 1 2 � � � � � ( ), p p L n4 3 2 2 � � � � � ( ) , (15) where �1 4 1 3 11 2 2 2 � � � arctg W L p p L p p L sin ( / )( ) sin ( / )( ) sin ( / � � � � �)( ) sin ( / )( ) cos ( / )( )p p W L p p L p p4 3 4 1 3 12 2� � � � , �2 3 2 3 11 2 2 2 � � � arctg W L p p L p p L sin ( / )( ) sin ( / )( ) sin ( / � � � � �)( ) sin ( / )( ) cos ( / )( )p p W L p p L p p2 1 3 2 3 12 2� � � � . If | |W � 1 we have p p L n3 2 3 2 � � � � � ( ), p p L n4 1 4 2 � � � � � ( ) , (16) where �3 2 1 4 11 2 2 2 � � � arctg sin ( / )( ) sin ( / )( ) sin ( / L p p L p p W L � � � � �)( ) sin ( / )( ) cos ( / )( )p p L p p L p p4 1 2 1 4 22 2� � � � , �4 2 1 3 11 2 2 � � � � arctg sin ( / )( ) sin ( / )( ) sin ( / L p p L p p W L � � 2 2 23 2 2 1 3 1� � �)( ) sin ( / )( ) cos ( / )( )p p L p p L p p� � � � . The within the framework of considered model of two bands the got the conditions of quantization are exact and are written down in a kind comfortable for the analysis of quantum size oscillations of thermodynamics and kinetic Size quantization in metal films Fizika Nizkikh Temperatur, 2007, v. 33, No. 9 1033 p1 e1 p2 e2 p3 e3 p4p4 e4 p� E � Fig. 1. The dependence of the energy bands E pz1 2, ||( , )p on component of the momentum pz. quantities. At n �� 1 these conditions of quantization within sizes coincide with the quasiclassical condition of size quantization, got in [3] * . In the interval of energies e e3 4� �� (see Fig. 1) roots p2 and p3 are complex numbers p p iq2 0� � , p p iq3 0� � . (17) In this case the condition of quantization is determined by formulas p p L n4 1 0 2 � � � � � ( ), (18) where �0 0 1 0 1 2 � � � � arctg ch sh ( / ) cos ( / )( ) ( / ) sin ( Lq L p p W Lq � � � L p p/ )( )� 0 1� , W0 2 4 1 4 12 � � � � � ! � � � � ! � � ( )( ) ( ) . Here, meaning P p0 0� ( , )|| p , we have � � � � � � � ( )( ( ) ) ( ) ( ) K P P K P 12 0 1 0 2 2 12 0 2 2 2m E q Kq , ! � � � � � � � q p K m E q Kq [ ( ) ( ( ) )] ( ) ( ) 2 20 12 0 1 0 2 2 12 0 2 2 K P P K P . In the interval of energies e e1 2� �� the roots p3 and p4 are complex numbers. In this case the condition of quantization is determined by formulas similar to the for- mulas (17), (18). 3. The quantum oscillations of thermodynamics [4] and kinetic [5] quantities in dependence on thickness of film are due to size quantization of energy of conductive electrons. This was discovered experimentally on films of bismuth [6] and antimony [7]. In obedience to the general theory of oscillatory effects [4], a period and amplitude C of quantum size oscillations depend on the extreme values of function n n p pe xe ye( ) ( , , )� �� and its derivative dn de / � a t � �� F , w h e r e �F i s t h e F e r mi l e v e l , � � �n pe x/ ,0 � � �n pe y/ 0. From the received higher the conditions of quantization we find the function n p p L D Lx y( , , ) ( , ) ( , , )|| ||� � � �� � 2 � p p , (19) satisfying to equality � �n ( )||p � . HereD is a chord of con- stant-energy surface, a function is limited (| | � 1) and substantially ( � L) changes with the change �. Taking L De 2 1 �� � into account, from (19) for the pe- riod of the oscillations we get "L D � 2�� extr . (20) Here Dextr is the extreme chord of the Fermi surface (FS). The amplitude C of considered oscillations is propor- tional � "[ / ( ]2 2� �#kT , where "� � � � � � � � � � 2 2 � � L D L p p Lxe ye| ( ) ( , , , ) |/ extr , (21) �( ) / ( )x x x� sh , T is temperature, k = 1, 2, 3… At an edge of band it is �F $ e1, e2, e3, e4 (see Fig. 1), | |W << 1 or | |W >> 1, then from (21) follows " 0 2 � � � � � � L D| ( )|extr , (22) that corresponds to the results got from the quasiclassical condition of the quantization (see [3,8]). With leaving from the edge of band approach (22) be- comes inapplicable. The quantity "� is calculated on a formula (21), where along with D F�( )� it is necessary to take into account � �� �( , , , )p p Lxe ye F . The periods of quantum size oscillations are determined (see (20)) by the extreme chords SF. Thus, the presence of the second band a near Fermi level, not changing a period, substantially changes amplitude of quantum size oscillations. The value "� can turn out more the value " 0� that will result in more slow decrease of oscillations with the increase of temperature. Experimental investigation [6,7,9,10] of quantum size effects in semimetal films show clearly the presence of periodic oscillations of physical quantities not only at low temperatures, but also at temperatures T � 100 K. It does not consent with estimation � "( / ( )2 2 0� �kT of the am- plitude of oscillations, got from quasiclassical quantiz- ation. It is necessary to take into account the closeness of two bands in the energy spectrum of electrons in bismuth. It is possible to do within the framework of foregoing theory. The exact conditions of size quantization got in this work allow to find the quantum sizes levels of energy of electrons of conductivity in a film of metal. It can serve by the basis of research of the effects conditioned dis- creteness of energy spectrum of electrons in a film. More than 50 years passed from the prediction [4] of quantum size effects. The interest to these effects does not weaken (see, for example, [11]). 1034 Fizika Nizkikh Temperatur, 2007, v. 33, No. 9 S.S. Nedorezov * Work [3] is executed by an author under the guidance and at the direct participation of I.M. Lifshits. 1. J.M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955). 2. S.S. Nedorezov, Fiz. Tverd. Tela 12, 2269 (1970) [Sov. Phys.-Solid State 12, 1814 (1971)]. 3. S.S. Nedorezov, Zh. Eksp. Teor. Fiz. 51, 868 (1966) [Sov. Phys.-JETF 24, 578 (1967)]. 4. I.M. Lifshits and A.M. Kosevich, Izv. Akad. Nauk SSSR, seriya fiz. 19, 395 (1955). 5. V.B. Sandomirski�, Zh. Eksp. Teor. Fiz. 52, 158 (1967). 6. Yu.F. Ogrin, V.N. Lutski�, and M.I. Elinson, Pis’ma Zh. Eksp.Teor. Fiz. 3, 114 (1966). 7. Yu.F. Komnik and E.I. Bukhshtab, Pis’ma Zh. Eksp.Teor. Fiz. 6, 536 (1967). 8. I.O. Kulik, Pis’ma Zh. Eksp.Teor. Fiz. 6, 652 (1967). 9. Yu.F. Ogrin, V.N. Lutski�, M.U. Arifova, V.I. Kovalev, V.B. Sandomirski�, and M.I. Elinson, Zh. Eksp. Teor. Fiz. 53,1218 (1967). 10. H.A. Combet and J.Y. Le Traon, Solid State Commun. 6, 85 (1968). 11. E. Ogando, N. Zabala, E.V. Chulkov and M.J. Puska. Phys. Rev. B69, 153410 (2004). Size quantization in metal films Fizika Nizkikh Temperatur, 2007, v. 33, No. 9 1035