Physico-Chemical model and computer simulations of silicon nanowire growth
A model of catalytically enhanced CVD growth of a silicon nanowire assembly on a substrate is developed, and growth process is simulated. Thermodynamic-kinetic theory is used for modeling of molecular transport in the gas phase, processes near catalyst surface and nanowire side of variable curvature...
Збережено в:
Дата: | 2005 |
---|---|
Автори: | , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
2005
|
Назва видання: | Semiconductor Physics Quantum Electronics & Optoelectronics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/120978 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Physico-Chemical model and computer simulations of silicon nanowire growth / A. Efremov, A. Klimovskaya, T. Kamins, B. Shanina, K. Grygoryev, S. Lukyanets // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2005. — Т. 8, № 3. — С. 1-11. — Бібліогр.: 37 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-120978 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1209782017-06-14T03:03:57Z Physico-Chemical model and computer simulations of silicon nanowire growth Efremov, A. Klimovskaya, A. Kamins, T. Shanina, B. Grygoryev, K . Lukyanets, S . A model of catalytically enhanced CVD growth of a silicon nanowire assembly on a substrate is developed, and growth process is simulated. Thermodynamic-kinetic theory is used for modeling of molecular transport in the gas phase, processes near catalyst surface and nanowire side of variable curvature, bulk diffusion of silicon adatoms through catalyst – body, and 2D nucleation. The simulation of atomic transport across surfaces is based on a long-wave approach of lattice gas approximation. To determine a character of atomic transport in TiSi₂-catalyst that is of great importance for application in Si-based technology, a density functional theory is used. The main result of modeling is that it is found a relationship between growth conditions (an initial radius of catalyst particles, their density, substrate temperature, content, pressure of gas, as well as properties of materials used) and, on the other hand, a growth rate, shape, composition, and type of atomic structure (amorphous or crystalline) of the nanowires grown. Besides, available experimental data published previously are discussed, and a qualitative agreement between theory and various experiments is obtained. This agreement gives rise to use the found relationship for controlling the nanowire growth. 2005 Article Physico-Chemical model and computer simulations of silicon nanowire growth / A. Efremov, A. Klimovskaya, T. Kamins, B. Shanina, K. Grygoryev, S. Lukyanets // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2005. — Т. 8, № 3. — С. 1-11. — Бібліогр.: 37 назв. — англ. 1560-8034 PACS: 68.70.+w, 81.10.-h, 81.15.Aa, 64.60.Qb http://dspace.nbuv.gov.ua/handle/123456789/120978 en Semiconductor Physics Quantum Electronics & Optoelectronics Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A model of catalytically enhanced CVD growth of a silicon nanowire assembly on a substrate is developed, and growth process is simulated. Thermodynamic-kinetic theory is used for modeling of molecular transport in the gas phase, processes near catalyst surface and nanowire side of variable curvature, bulk diffusion of silicon adatoms through catalyst – body, and 2D nucleation. The simulation of atomic transport across surfaces is based on a long-wave approach of lattice gas approximation. To determine a character of atomic transport in TiSi₂-catalyst that is of great importance for application in Si-based technology, a density functional theory is used. The main result of modeling is that it is found a relationship between growth conditions (an initial radius of catalyst particles, their density, substrate temperature, content, pressure of gas, as well as properties of materials used) and, on the other hand, a growth rate, shape, composition, and type of atomic structure (amorphous or crystalline) of the nanowires grown. Besides, available experimental data published previously are discussed, and a qualitative agreement between theory and various experiments is obtained. This agreement gives rise to use the found relationship for controlling the nanowire growth. |
format |
Article |
author |
Efremov, A. Klimovskaya, A. Kamins, T. Shanina, B. Grygoryev, K . Lukyanets, S . |
spellingShingle |
Efremov, A. Klimovskaya, A. Kamins, T. Shanina, B. Grygoryev, K . Lukyanets, S . Physico-Chemical model and computer simulations of silicon nanowire growth Semiconductor Physics Quantum Electronics & Optoelectronics |
author_facet |
Efremov, A. Klimovskaya, A. Kamins, T. Shanina, B. Grygoryev, K . Lukyanets, S . |
author_sort |
Efremov, A. |
title |
Physico-Chemical model and computer simulations of silicon nanowire growth |
title_short |
Physico-Chemical model and computer simulations of silicon nanowire growth |
title_full |
Physico-Chemical model and computer simulations of silicon nanowire growth |
title_fullStr |
Physico-Chemical model and computer simulations of silicon nanowire growth |
title_full_unstemmed |
Physico-Chemical model and computer simulations of silicon nanowire growth |
title_sort |
physico-chemical model and computer simulations of silicon nanowire growth |
publisher |
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України |
publishDate |
2005 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/120978 |
citation_txt |
Physico-Chemical model and computer simulations of silicon nanowire growth / A. Efremov, A. Klimovskaya, T. Kamins, B. Shanina, K. Grygoryev, S. Lukyanets // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2005. — Т. 8, № 3. — С. 1-11. — Бібліогр.: 37 назв. — англ. |
series |
Semiconductor Physics Quantum Electronics & Optoelectronics |
work_keys_str_mv |
AT efremova physicochemicalmodelandcomputersimulationsofsiliconnanowiregrowth AT klimovskayaa physicochemicalmodelandcomputersimulationsofsiliconnanowiregrowth AT kaminst physicochemicalmodelandcomputersimulationsofsiliconnanowiregrowth AT shaninab physicochemicalmodelandcomputersimulationsofsiliconnanowiregrowth AT grygoryevk physicochemicalmodelandcomputersimulationsofsiliconnanowiregrowth AT lukyanetss physicochemicalmodelandcomputersimulationsofsiliconnanowiregrowth |
first_indexed |
2023-10-18T20:38:33Z |
last_indexed |
2023-10-18T20:38:33Z |
_version_ |
1796150718441193472 |