The crossflow piezo-electrooptic effect in crystals. Example of lithium tantalate

In the present paper the thermodynamic and phenomenological descriptions of the crossflow piezo-electrooptic effect in crystals have been made. For example the necessary experimental measurements of this effect have been carried out in the lithium tantalate crystals. For these crystals at first the P₃...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2000
Hauptverfasser: Andrushchak, A.S., Sydoryk, I.V., Kaidan, M.V., Vlokh, R.O.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2000
Schriftenreihe:Condensed Matter Physics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/120987
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The crossflow piezo-electrooptic effect in crystals. Example of lithium tantalate / A.S. Andrushchak, I.V. Sydoryk, M.V. Kaidan, R.O. Vlokh // Condensed Matter Physics. — 2000. — Т. 3, № 4(24). — С. 857-862. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-120987
record_format dspace
spelling irk-123456789-1209872017-06-14T03:03:53Z The crossflow piezo-electrooptic effect in crystals. Example of lithium tantalate Andrushchak, A.S. Sydoryk, I.V. Kaidan, M.V. Vlokh, R.O. In the present paper the thermodynamic and phenomenological descriptions of the crossflow piezo-electrooptic effect in crystals have been made. For example the necessary experimental measurements of this effect have been carried out in the lithium tantalate crystals. For these crystals at first the P₃₃₁₁₃ - P₁₁₁₁₃ = −4, 6 • 10⁻¹⁹ m³/ N•V absolute coefficients difference of crossflow piezo-electrooptic effect were determined by two measurement methods. У даній роботі було здійснено термодинамічний і феноменологічний описи перехресного п’єзо-електрооптичного ефекту в кристалах. Для прикладу були проведені необхідні експериментальні вимірювання вказаного ефекту в кристалах танталату літію. Для цих кристалів на основі двох різних методів вимірювання вперше було визначено різницю абсолютних коефіцієнтів перехресного п’єзо-електрооптичного ефекту P₃₃₁₁₃ - P₁₁₁₁₃ = −4, 6 · 10⁻¹⁹ м³/ Н·В. 2000 Article The crossflow piezo-electrooptic effect in crystals. Example of lithium tantalate / A.S. Andrushchak, I.V. Sydoryk, M.V. Kaidan, R.O. Vlokh // Condensed Matter Physics. — 2000. — Т. 3, № 4(24). — С. 857-862. — Бібліогр.: 8 назв. — англ. 1607-324X DOI:10.5488/CMP.3.4.857 PACS: 77.84.Dc, 78.20.Hp, 78.20.Fm http://dspace.nbuv.gov.ua/handle/123456789/120987 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In the present paper the thermodynamic and phenomenological descriptions of the crossflow piezo-electrooptic effect in crystals have been made. For example the necessary experimental measurements of this effect have been carried out in the lithium tantalate crystals. For these crystals at first the P₃₃₁₁₃ - P₁₁₁₁₃ = −4, 6 • 10⁻¹⁹ m³/ N•V absolute coefficients difference of crossflow piezo-electrooptic effect were determined by two measurement methods.
format Article
author Andrushchak, A.S.
Sydoryk, I.V.
Kaidan, M.V.
Vlokh, R.O.
spellingShingle Andrushchak, A.S.
Sydoryk, I.V.
Kaidan, M.V.
Vlokh, R.O.
The crossflow piezo-electrooptic effect in crystals. Example of lithium tantalate
Condensed Matter Physics
author_facet Andrushchak, A.S.
Sydoryk, I.V.
Kaidan, M.V.
Vlokh, R.O.
author_sort Andrushchak, A.S.
title The crossflow piezo-electrooptic effect in crystals. Example of lithium tantalate
title_short The crossflow piezo-electrooptic effect in crystals. Example of lithium tantalate
title_full The crossflow piezo-electrooptic effect in crystals. Example of lithium tantalate
title_fullStr The crossflow piezo-electrooptic effect in crystals. Example of lithium tantalate
title_full_unstemmed The crossflow piezo-electrooptic effect in crystals. Example of lithium tantalate
title_sort crossflow piezo-electrooptic effect in crystals. example of lithium tantalate
publisher Інститут фізики конденсованих систем НАН України
publishDate 2000
url http://dspace.nbuv.gov.ua/handle/123456789/120987
citation_txt The crossflow piezo-electrooptic effect in crystals. Example of lithium tantalate / A.S. Andrushchak, I.V. Sydoryk, M.V. Kaidan, R.O. Vlokh // Condensed Matter Physics. — 2000. — Т. 3, № 4(24). — С. 857-862. — Бібліогр.: 8 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT andrushchakas thecrossflowpiezoelectroopticeffectincrystalsexampleoflithiumtantalate
AT sydorykiv thecrossflowpiezoelectroopticeffectincrystalsexampleoflithiumtantalate
AT kaidanmv thecrossflowpiezoelectroopticeffectincrystalsexampleoflithiumtantalate
AT vlokhro thecrossflowpiezoelectroopticeffectincrystalsexampleoflithiumtantalate
AT andrushchakas crossflowpiezoelectroopticeffectincrystalsexampleoflithiumtantalate
AT sydorykiv crossflowpiezoelectroopticeffectincrystalsexampleoflithiumtantalate
AT kaidanmv crossflowpiezoelectroopticeffectincrystalsexampleoflithiumtantalate
AT vlokhro crossflowpiezoelectroopticeffectincrystalsexampleoflithiumtantalate
first_indexed 2025-07-08T18:58:33Z
last_indexed 2025-07-08T18:58:33Z
_version_ 1837106321900437504
fulltext Condensed Matter Physics, 2000, Vol. 3, No. 4(24), pp. 857–862 The crossflow piezo-electrooptic effect in crystals. Example of lithium tantalate A.S.Andrushchak, I.V.Sydoryk, M.V.Kaidan, R.O.Vlokh Institute of Physical Optics, 23 Dragomanov Str., 79005 Lviv, Ukraine Received February 16, 2000, in final form September 26, 2000 In the present paper the thermodynamic and phenomenological descrip- tions of the crossflow piezo-electrooptic effect in crystals have been made. For example the necessary experimental measurements of this effect have been carried out in the lithium tantalate crystals. For these crystals at first the P33113−P11113 = −4.6·10−19 m3/ N·V absolute coefficients difference of crossflow piezo-electrooptic effect were determined by two measurement methods. Key words: thermodynamic and phenomenological descriptions, crossflow piezo-electrooptic effect, lithium tantalate crystals, induced birefringence PACS: 77.84.Dc, 78.20.Hp, 78.20.Fm 1. Introduction The crossflow piezo-electrooptic effect, resulting frommutual interaction of piezo- and electrooptic effects in crystal materials, is poorly investigated because of its small values [1] on the background of a direct action of the piezo- or electrooptic effects. The aim of the present work is to carry out thermodynamic and phenomenolog- ical description of the crossflow piezo-electrooptic effect and make necessary exper- imental measurements for its verification. 2. Thermodynamic description According to the general thermodynamic theory [2–4], a crystal appears as a thermodynamic system the monocrystal state of which is determined by certain numbers of variables. Mechanical stress σij , electrical field strength Ei and temper- ature T are chosen as independent variables. Herein Gibbs free energy G is assumed as thermodynamic function for which [1,5]: G = U − εσ −E(D /4π)− TS, (1) c© A.S.Andrushchak, I.V.Sydoryk, M.V.Kaidan, R.O.Vlokh 857 A.S.Andrushchak et al. where U is the inner energy. Then, the components of the mechanical deformation εij, electrical field induction Di and entropy S will be functions of independent variables. Let’s spread in the MacLaurin’s series the εij and Di up to the third order of smallness (no thermal effects are taken into account) because their meanings of the second and the third order of smallness are insignificant [6]). Setting for convenience δm = Dm/4π, we will have: εkl = ∂εkl ∂σij σij + ∂εkl ∂En En + 1 2 [ ∂2εkl ∂σij∂σqr σijσqr + 2 ∂2εkl ∂σij∂En σijEn + ∂2εkl ∂En∂Eo EnEo ] + 1 6 [ ∂3εkl ∂σij∂σqr∂σst σijσqrσst + 3 ∂3εkl ∂σij∂σqr∂En σijσqrEn +3 ∂3εkl ∂σij∂En∂Eo σijEnEo + ∂3εkl ∂En∂Eo∂Ep EnEoEp ] , (2) δm = ∂δm ∂σij σij + ∂δm ∂En En + 1 2 [ ∂2δm ∂σij∂σqr σijσqr + 2 ∂2δm ∂σij∂En σijEn + ∂2δm ∂En∂Eo EnEo ] + 1 6 [ ∂3δm ∂σij∂σqr∂σst σijσqrσst + 3 ∂3δm ∂σij∂σqr∂En σijσqrEn +3 ∂3δm ∂σij∂En∂Eo σijEnEo + ∂3δm ∂En∂Eo∂Ep EnEoEp ] . (3) Besides, the following equations are valid [5]: ∂G ∂σkl = −εkl, ∂G ∂Em = −δm, ∂δm ∂σkl = ∂εkl ∂Em . (4) Considerations of the physical sense of the partial derivatives are given more in full in [1]. We will take into consideration only components describing crossflow effects. They are: Aklijn = ∂2εkl ∂σij∂En = − ∂3G ∂σij∂σkl∂En = ∂Sklij ∂En ≡ ∂2δn ∂σij∂σkl = ∂dnij ∂σkl . (5) It is a correction part to the elastic compliance constant Sklij, which is connected with the electrical field En acting in the crystal, or the same, correction part to the reverse piezoelectric effect constant dnij under the action of the mechanical stress σij . It is fifth-rank tensor, which describes a crossflow piezo-electrostrictive effect caused in the crystal by mutual interaction of the electrical field and the mechanical stress. Furthermore: Bmnijo = ∂3δm ∂σij∂En∂Eo = − ∂4G ∂σij∂Em∂En∂Eo = ∂µmnij ∂Eo ≡ ∂ ∂Eo ( ∂kmn ∂σij ) = ∂ ∂σij ( ∂kmn ∂Eo ) = ∂ρmno ∂σij . (6) 858 The crossflow piezo-electrooptic effect in crystals Here kmn – permittivity tensor and Bmnijo – a tensor of crossflow piezo-electroop- tic effect, which determine the change of the piezooptic module µmnij = ∂kmn/∂σij under the action of the electrical field Eo, or the same, the change of the liner electrooptic effect tensor ρmno = ∂kmn/∂Eo under the action of the mechanical stress σij . Then, as parts of the second order of smallness are neglected, the simplified correlations (2) and (3) are: εkl = Sklijσij + dnklEn + AklijnσijEn, (7) Dm = 4πdmijσij + En[kmn + µmnijσij + ρmnoEo/2 +BmnijoσijEo/2], (8) where dmij is a tensor of piezoelectric effect. 3. Phenomenological description In the given work, the phenomenological description of a crossflow effect needed for the explanation of our experimental measurements is carried out. As is generally known, the external action (be it the mechanical stress σmn or the external electric field El) exerted on the crystal sample results in the change of birefringence δ(∆nk) = δni − δnj (or refractive indices δni, δnj) of the sample as well as its length δtk in the direction k of light propagation, which are registered by polarization-optic method through the change of an optical path difference δ∆k of this sample: δ∆k = δ(∆nktk) = tkδ(∆nk) + ∆nkδtk. (9) The value δ(∆nk) or δni, δnj can be determined from the tensor for polarization constants aij. Beside the coefficients of piezo- πijmn and linear electrooptic rijl ef- fects, this tensor in the first approximation for acentric crystals also contains the coefficients of their crossflow effect [1], analogous to (8): ∆aij = πijmnσmn + rijlEl + Pijmnl(σmnEl), (10) where Pijmnl = ∂πijmn/∂El = ∂rijl/∂σmn is the tensor of crossflow piezo-electrooptic effect (tensor of absolute coefficients), σmnEl = gmnl is the 3-rank tensor, which equals the product of the 2-rank tensor σmn and vector El. From a thermodynamic description of crossflow piezo-electrooptic effect Pmnijl (see formula (6)), one can describe symmetrical properties of this tensor while replacing the indexes P ijmnl = Pjimnl = Pijnml = Pijlmn. The complete form of this tensor is given in [7]. Analogously, the value δtk is determined from the deformation tensor εkl (see formula (7)), which beside the coefficients of elastic Sklij and piezoelectric dnkl effects also contains the coefficients of their crossflow Aklijn effect. This crossflow Aklijn effect is named “false” effect in our case. To derive the necessary operating correlations we use the matrix interpretation of the processed tensors. For a crystal with small initial birefringence the correlation (9) will be simplified to δ∆k = tkδ(∆nk), where the δ(∆nk) value is equal to [5,8]: 859 A.S.Andrushchak et al. δ(∆nk) = −π∗ kmσm/2. (11) Here π∗ km = πimn 3 i − πjmn 3 j is a known piezooptic coefficient of the induced birefrin- gence. For half-wave stresses σo m, when δ∆k = λ/2 (λ is a length of light wave), one can obtain: λ/2 = −π∗ kmσ o mtk/2. (12) After applying the electric field El, for repeatedly measured half-wave stresses σo′ m, we obtain: λ/2 = −π∗ kmσ o′ mtk/2− P ∗ kmlσ o′ mEltk/2. (13) Analogously P ∗ kml = Pimln 3 i −Pjmln 3 j is the crossflow piezo-electrooptic coefficient of the induced birefringence. Mutual solution of (12) and (13) gives us the value of this coefficient to be searched for: P ∗ kml = λ[(σo′ m/σ o m)− 1]/(σo′ mEltk). (14) A similar formula can be obtained at measuring the magnitudes of half-wave electric fields Eo l and Eo′ l for σm = 0 and σm 6= 0 accordingly. 4. Experimental results Figure 1. The dependences of bire- fringence change δ(∆n2) for lithium tantalate crystals on the normal me- chanical stress σ11 for different mag- nitudes of electrical fields E3 (for light wave λ = 0, 6328 µm and temperature T=293 K). The measurements of crossflow piezo- electrooptic effect were carried out us- ing the polarisation-interferometrical tech- nique by Senarmont method and half-wave stresses method [5]. To exclude a possible error, connected with the measurement of “false” crossflow effect, the LiTaO3 crystals with a small initial birefringence (∆nk = 0, 005) were used. For these crystals, the elastic compo- nent in (9) and therefore “false” crossflow effect could be neglected. We have determined the crossflow piezo-electrooptic effect P ∗ 22113 component on the sample of direct cut, when k ‖ Y, σm ‖ X and El ‖ Z. In the figures the de- pendences for the δ(∆n2) value under the normal mechanical stress σ11 for different magnitudes of E3 (figure 1) are shown as well as the δ(∆n2) value under the electrical field E3 for different magnitudes of σ11 (figure 2). From the changes of angular coefficients for linear interpolation of these behaviours we have calculated the average magnitudes of P ∗ 22113 = −5.0 ·10−18 m3/N · V (from figure 1) and P ∗ 22113 = −4.4 · 10−18 m3/N · V (from figure 2). 860 The crossflow piezo-electrooptic effect in crystals Figure 2. Analogous to figure 1 the dependences of δ(∆n2) on the electri- cal fields E3 for different magnitudes of mechanical stress σ11. The difference of these coefficients can be explained by the induced rotation of the optical indicatrix around the X axis under the action of the mechanical stress σ11. It leads to the change of extraordinary index ne of light wave according to the known equation: δne = ne(1−cos(π41σ11/(n −2 e −n−2 o )). (15) Taking this into account, we have found the new magnitude of P ∗ 22113 = −4.7 ·10−18 m3/N · V from figure 1. This coefficient P ∗ 22113 has also been de- termined from the method of half-wave stresses. Having determined the half-wave mechanical stress σ o m for El = 0 and σo′ m upon the action of electrical field El 6= 0, we have calculated the magnitude P ∗ kkmml according to formula (14), which was equal P ∗ 22113 = −5.1 · 10−18 m3/N · V. It is also noted that from P ∗ 22113 one can calculate the absolute coefficients com- bination of crossflow piezo-electrooptic effect (taking into account that no ≈ ne = 2.175): P33113 − P11113 ≈ P ∗ 22113 /n3 o = −4.6 · 10−19 m3/N · V. Besides, according to (6): P ∗ 22113 = ∂π∗ 2211 /∂E3 ≈ ∆π∗ 2211 /∆E3, and therefore at the electrical field change of ∆E3 = 2.3 ·105 V/m the change of piezooptic coefficient is equal ∆π∗ 2211 = P ∗ 22113 ∆E3 = 1.1 · 10−12 m2/N. For comparison, the magnitude of coefficient π∗ 2211 from our measurements is equal to 10.4 · 10−12 m2/N. 5. Conclusions 1. The thermodynamic descriptions of crossflow piezo-electrooptic effect in crys- tals and the necessary phenomenological descriptions for anisotropic materials with small initial birefringence have been made in the paper. 2. For lithium tantalate crystals, at first the P33113−P11113 = −4.6·10−19m3/N · V absolute coefficients difference of crossflow piezo-electrooptic effect were determined. For these crystals, the change of ∆π∗ 2211 because of crossflow effect corresponds to ∼ 10% of coefficient π∗ 2211 at electrical field change of ∆E3 = 2.3 · 105 V/m. 3. The equality (within the limits of experimental error) of the P ∗ 22113 coefficient, obtained from different measurement methods, demonstrated the correctness of our results and showed the possibility of measuring the crossflow piezo-electrooptic effect in anisotropic crystals with small initial birefringence using these methods. References 1. Sirotin Yu.I., Shaskolskya M.P. Essentials of Crystallophysics. Moscow, Nauka, 1979 (in Russian). 861 A.S.Andrushchak et al. 2. Mason W. Crystal Physics of Interaction Processes. New–York, Lond. Acad. Press, 1966. 3. Mason W. // Bell. Techn. J., 1950, vo1. 29, p. 161. 4. Nye J. Physical Properties of Crystals. Moscow, Mir, 1967 (in Russian). 5. Sonin A.S., Vasilevskaya A.S. Electrooptical Crystals. Moscow, Atomizdat, 1971 (in Russian). 6. Mason W. Piezooptical Crystals and their Application in Acoustics. Moscow, Izd. inostran. liter., 1952 (in Russian). 7. Koptsyk V.A. Shubnikov’s Groups. Moscow, Izd. MGU, 1966 (in Russian). 8. Mytsyk B.G., Pryriz Ya.V., Andrushchak A.S. The lithium niobate piezooptical fea- tures. // Cryst. Res. Technol., 1991, vol. 26, No. 7, p. 931–940. Перехресний п’єзо-електрооптичний ефект на прикладі кристалів танталату літію А.С.Андрущак, І.В.Сидорик, М.В.Кайдан, Р.О.Влох Інститут фізичної оптики, 79005 Львів, вул.Драгоманова 23 Отримано 16 лютого 2000 р., в остаточному вигляді – 26 вересня 2000 р. У даній роботі було здійснено термодинамічний і феноменологічний описи перехресного п’єзо-електрооптичного ефекту в кристалах. Для прикладу були проведені необхідні експериментальні вимірю- вання вказаного ефекту в кристалах танталату літію. Для цих кри- сталів на основі двох різних методів вимірювання вперше було ви- значено різницю абсолютних коефіцієнтів перехресного п’єзо-елек- трооптичного ефекту P33113 − P11113 = −4, 6 · 10−19 м3/ Н·В. Ключові слова: термодинамічний та феноменологічний описи, перехресний п’єзо-електрооптичний ефект, кристал танталату літію, індуковане двозаломлення PACS: 77.84.Dc, 78.20.Hp, 78.20.Fm 862