2025-02-23T09:00:04-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-121006%22&qt=morelikethis&rows=5
2025-02-23T09:00:04-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-121006%22&qt=morelikethis&rows=5
2025-02-23T09:00:04-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T09:00:04-05:00 DEBUG: Deserialized SOLR response
Spin dynamics simulations of collective excitations in magnetic liquids
A novel approach is developed for computer simulation studies of dynamical properties of spin liquids. It is based on the Liouville operator formalism of Hamiltonian dynamics in conjunction with Suzuki-Trotter-like decompositions of exponential propagators. As a result, a whole set of symplectic t...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут фізики конденсованих систем НАН України
2000
|
Series: | Condensed Matter Physics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/121006 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel approach is developed for computer simulation studies of dynamical properties of spin liquids. It is based on the Liouville operator formalism
of Hamiltonian dynamics in conjunction with Suzuki-Trotter-like decompositions of exponential propagators. As a result, a whole set of symplectic
time-reversible algorithms has been introduced for numerical integration of
the equations of motion at the presence of both translational and spin degrees of freedom. It is shown that these algorithms can be used in actual
simulations with much larger time steps than those inherent in standard
predictor-corrector schemes. This has allowed one to perform direct quantitative measurements for spin-spin, spin-density and density-density dynamical structure factors of a Heisenberg ferrofluid model for the first time.
It was established that like pure liquids the density spectrum can be expressed in terms of heat and sound modes, whereas like spin lattices in
the ferromagnetic phase there exists one primary spin in the shape of spin-
spin dynamic structure factors describing the longitudinal and transverse
spin fluctuations. As it was predicted in our previous paper [Mryglod I.,
Folk R. et al., Physica A277 (2000) 389] we found also that a secondary
wave peak appears additionally in the longitudinal spin-spin dynamic structure factor. The frequency position of this peak coincides entirely with that
for a sound mode reflecting the effect of the liquid subsystem on spin dynamics. The possibility of longitudinal spin wave propagation in magnetic
liquids at sound frequency can be considered as a new effect which has
yet to be tested experimentally. |
---|