On collective variables method in the microscopic theory of alloys
Ab initio approach is developed for thermodynamical investigations of disordered binary alloys. It is based on utilizing the collective variables method. The explicit expression for the free energy and the equation determining the alloy components' chemical potentials are obtained within the ri...
Збережено в:
Дата: | 2000 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2000
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/121020 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On collective variables method in the microscopic theory of alloys / Z. Gurskii // Condensed Matter Physics. — 2000. — Т. 3, № 2(22). — С. 307-334. — Бібліогр.: 61 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Ab initio approach is developed for thermodynamical investigations of disordered binary alloys. It is based on utilizing the collective variables method. The explicit expression for the free energy and the equation determining the alloy components' chemical potentials are obtained within the rigid
lattice approximation and for the case when atomic static displacements
(ASD) are taken into consideration. An ASD drastic effect on the behaviour
of the binary correlation function Fourier components in the first Brillouin
zone is observed. The ASD is shown to favour the ordering tendency in
alloys of Ca-Ba and K-Cs systems. An approach in which configurational
and vibrational degrees of freedom are considered at the microscopic level
in the grand partition sum calculation is advanced. The role of the atomic
thermal vibrations in alloy forming is discussed. The condition when configurational and vibrational effects can be treated separately is formulated. |
---|