Canonical nonequilibrium statistics and applications to Fermi-Bose systems
The aim of this work is the study of a special class of nonequilibrium systems which admits to find exact stationary solutions of the kinetic equations. In particular we investigate canonical-dissipative systems, where the driving terms are determined by the Hamiltonian or other invariants of motion...
Збережено в:
Дата: | 2000 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2000
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/121025 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Canonical nonequilibrium statistics and applications to Fermi-Bose systems / W. Ebeling // Condensed Matter Physics. — 2000. — Т. 3, № 2(22). — С. 285-293. — Бібліогр.: 24 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The aim of this work is the study of a special class of nonequilibrium systems which admits to find exact stationary solutions of the kinetic equations. In particular we investigate canonical-dissipative systems, where the
driving terms are determined by the Hamiltonian or other invariants of motion only. We construct systems which drive the system to special invariants of motion and solve the corresponding Fokker-Planck equations. Finally several applications to mean-field problems for fermion and for boson
systems are discussed. |
---|