Thermodynamic and kinetic description of the second order phase transitions
Thermodynamic and kinetic description of phase transitions for the model of ferroelectrics based on the kinetic equation for the distribution function of values of the “order parameter”, coordinates and time is considered. For one-domain ferroelectrics, the self-consistent approximation for the fi...
Збережено в:
Дата: | 2000 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2000
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/121030 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Thermodynamic and kinetic description of the second order phase transitions / Yu.L. Klimontovich // Condensed Matter Physics. — 2000. — Т. 3, № 2(22). — С. 393-416. — Бібліогр.: 18 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Thermodynamic and kinetic description of phase transitions for the model
of ferroelectrics based on the kinetic equation for the distribution function
of values of the “order parameter”, coordinates and time is considered.
For one-domain ferroelectrics, the self-consistent approximation for the first
moment is used. The kinetic equation is reduced to the relaxation Ginsburg-
Landau equation. The susceptibility is governed by the Curie law and the
heat capacity has the jump.
Calculations are carried out for one-domain and polydomain ferroelectrics.
In the first case, the self-consistent approximation for the first moment is
used. In the second case, the self-consistent approximation for the second
moment is carried out. In the last case, there is the jump of the susceptibility. The heat capacity is governed by the Curie law.
It is also shown that the Ornstein-Zernike formula is valid not for the space
correlator of fluctuations but only for the temporal spectral density of the
space correlator at zero frequency.
In the kinetic theory of the phase transition, all physical characteristics at
the critical point have got finite values. Thus, the problem of the “infinities”
is absent. |
---|