Classical relativistic systems of charged particles in the front form of dynamics and the Liouville equation
Classical relativistic system of point particles coupled with an electromagnetic field is considered in the three-dimensional representation. The gauge freedom connected with the chronometrical invariance of the four-dimensional description is reduced by use of the geometrical concept of the forms...
Збережено в:
Дата: | 2000 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2000
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/121042 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Classical relativistic systems of charged particles in the front form of dynamics and the Liouville equation / A. Nazarenko, V. Tretyak // Condensed Matter Physics. — 2000. — Т. 3, № 1(21). — С. 5-22. — Бібліогр.: 25 назв. — англ. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Classical relativistic system of point particles coupled with an electromagnetic field is considered in the three-dimensional representation. The gauge
freedom connected with the chronometrical invariance of the four-dimensional description is reduced by use of the geometrical concept of the forms
of relativistic dynamics. The remainder gauge degrees of freedom of the
electromagnetic potential are analysed within the framework of Dirac's constrained Hamiltonian mechanics in the front form of dynamics. The results
are applied to the problems of relativistic statistical mechanics. Based on
the corresponding Liouville equation the classical partition function of the
system is written down in a gauge-invariant manner and an integration over
field variables is performed. |
---|