Nematic phase transitions in two-dimensional systems
Simulations of nematic-isotropic transition of liquid crystals in two dimensions are performed using an O(2) vector model characterized by non linear nearest neighbour spin interaction governed by the fourth Legendre polynomial P₄. The system is studied through standard Finite-Size Scaling and c...
Збережено в:
Дата: | 2005 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2005
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/121047 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Nematic phase transitions in two-dimensional systems / B. Berche, R. Paredes // Condensed Matter Physics. — 2005. — Т. 8, № 4(44). — С. 723–736. — Бібліогр.: 33 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Simulations of nematic-isotropic transition of liquid crystals in two dimensions
are performed using an O(2) vector model characterized by non
linear nearest neighbour spin interaction governed by the fourth Legendre
polynomial P₄. The system is studied through standard Finite-Size Scaling
and conformal rescaling of density profiles or correlation functions. The low
temperature limit is discussed in the spin wave approximation and confirms
the numerical results, while the value of the correlation function exponent
at the deconfining transition seems controversial. |
---|