2025-02-23T09:21:17-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-121153%22&qt=morelikethis&rows=5
2025-02-23T09:21:17-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-121153%22&qt=morelikethis&rows=5
2025-02-23T09:21:17-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T09:21:17-05:00 DEBUG: Deserialized SOLR response
Polarization operator of phonons in quadratic approximation
Using the method of the retarded Green function the polarization operator of phonons has been calculated with the simultaneous account for the linear and quadratic terms in the Hamilton operator of exciton-phonon interaction. It is shown that at high temperatures and concentrations of excitons the q...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
2000
|
Series: | Semiconductor Physics Quantum Electronics & Optoelectronics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/121153 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-121153 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1211532017-06-14T03:04:40Z Polarization operator of phonons in quadratic approximation Grigorchuk, N.I. Using the method of the retarded Green function the polarization operator of phonons has been calculated with the simultaneous account for the linear and quadratic terms in the Hamilton operator of exciton-phonon interaction. It is shown that at high temperatures and concentrations of excitons the quadratic term may play as important role as linear one. 2000 Article Polarization operator of phonons in quadratic approximation / N.I. Grigorchuk // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2000. — Т. 3, № 3. — С. 316-321. — Бібліогр.: 22 назв. — англ. 1560-8034 PACS: 63.20.Dj; 63.20.Ls; 71.35.-y; 71.35Gg; 78.20.-e. http://dspace.nbuv.gov.ua/handle/123456789/121153 en Semiconductor Physics Quantum Electronics & Optoelectronics Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Using the method of the retarded Green function the polarization operator of phonons has been calculated with the simultaneous account for the linear and quadratic terms in the Hamilton operator of exciton-phonon interaction. It is shown that at high temperatures and concentrations of excitons the quadratic term may play as important role as linear one. |
format |
Article |
author |
Grigorchuk, N.I. |
spellingShingle |
Grigorchuk, N.I. Polarization operator of phonons in quadratic approximation Semiconductor Physics Quantum Electronics & Optoelectronics |
author_facet |
Grigorchuk, N.I. |
author_sort |
Grigorchuk, N.I. |
title |
Polarization operator of phonons in quadratic approximation |
title_short |
Polarization operator of phonons in quadratic approximation |
title_full |
Polarization operator of phonons in quadratic approximation |
title_fullStr |
Polarization operator of phonons in quadratic approximation |
title_full_unstemmed |
Polarization operator of phonons in quadratic approximation |
title_sort |
polarization operator of phonons in quadratic approximation |
publisher |
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України |
publishDate |
2000 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/121153 |
citation_txt |
Polarization operator of phonons in quadratic approximation / N.I. Grigorchuk // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2000. — Т. 3, № 3. — С. 316-321. — Бібліогр.: 22 назв. — англ. |
series |
Semiconductor Physics Quantum Electronics & Optoelectronics |
work_keys_str_mv |
AT grigorchukni polarizationoperatorofphononsinquadraticapproximation |
first_indexed |
2023-10-18T20:38:46Z |
last_indexed |
2023-10-18T20:38:46Z |
_version_ |
1796150741152301056 |