Ionic interaction and conductivity of metallic hydrogen
We calculate the electroresistivity of metallic hydrogen within the framework of perturbation theory in electronproton interaction. To this end we employ the Kubo linear response theory while using the two-time retarded Green functions method to calculate the relaxation time. The expressions for t...
Збережено в:
Дата: | 2006 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2006
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/121306 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Ionic interaction and conductivity of metallic hydrogen / V.T. Shvets, S.V. Savenko, Ye.K. Malynovski // Condensed Matter Physics. — 2006. — Т. 9, № 1(45). — С. 127–133. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-121306 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1213062017-06-15T03:05:14Z Ionic interaction and conductivity of metallic hydrogen Shvets, V.T. Savenko, S.V. Malynovski, Ye.K. We calculate the electroresistivity of metallic hydrogen within the framework of perturbation theory in electronproton interaction. To this end we employ the Kubo linear response theory while using the two-time retarded Green functions method to calculate the relaxation time. The expressions for the second and third order contributions are given. To describe the electron subsystem, the random phase approximation is used, allowing for the exchange interactions and correlations in a local field approximation. Thermodynamics of the proton subsystem is assumed to be given by the Percus-Yevick equation. At a given density and temperature the only parameter of the theory is the hard sphere diameter, which is calculated from effective pair ionic interaction. For a completely degenerated electron gas, the latter is determined by the density of the system. The dependence of the second and the third order contributions on the parameters of the theory is investigated. For all densities and temperatures examined here the third order contribution constitutes more than half of the second order term. The corresponding magnitude of resistivity is about 100 ∼ 250µΩ cm. 2006 Article Ionic interaction and conductivity of metallic hydrogen / V.T. Shvets, S.V. Savenko, Ye.K. Malynovski // Condensed Matter Physics. — 2006. — Т. 9, № 1(45). — С. 127–133. — Бібліогр.: 15 назв. — англ. 1607-324X PACS: 71.10.+x, 72.10.Bg, 72.15.Cz DOI:10.5488/CMP.9.1.127 http://dspace.nbuv.gov.ua/handle/123456789/121306 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We calculate the electroresistivity of metallic hydrogen within the framework of perturbation theory in electronproton
interaction. To this end we employ the Kubo linear response theory while using the two-time retarded
Green functions method to calculate the relaxation time. The expressions for the second and third order contributions
are given. To describe the electron subsystem, the random phase approximation is used, allowing
for the exchange interactions and correlations in a local field approximation. Thermodynamics of the proton
subsystem is assumed to be given by the Percus-Yevick equation. At a given density and temperature the
only parameter of the theory is the hard sphere diameter, which is calculated from effective pair ionic interaction.
For a completely degenerated electron gas, the latter is determined by the density of the system. The
dependence of the second and the third order contributions on the parameters of the theory is investigated.
For all densities and temperatures examined here the third order contribution constitutes more than half of the
second order term. The corresponding magnitude of resistivity is about 100 ∼ 250µΩ cm. |
format |
Article |
author |
Shvets, V.T. Savenko, S.V. Malynovski, Ye.K. |
spellingShingle |
Shvets, V.T. Savenko, S.V. Malynovski, Ye.K. Ionic interaction and conductivity of metallic hydrogen Condensed Matter Physics |
author_facet |
Shvets, V.T. Savenko, S.V. Malynovski, Ye.K. |
author_sort |
Shvets, V.T. |
title |
Ionic interaction and conductivity of metallic hydrogen |
title_short |
Ionic interaction and conductivity of metallic hydrogen |
title_full |
Ionic interaction and conductivity of metallic hydrogen |
title_fullStr |
Ionic interaction and conductivity of metallic hydrogen |
title_full_unstemmed |
Ionic interaction and conductivity of metallic hydrogen |
title_sort |
ionic interaction and conductivity of metallic hydrogen |
publisher |
Інститут фізики конденсованих систем НАН України |
publishDate |
2006 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/121306 |
citation_txt |
Ionic interaction and conductivity of metallic hydrogen / V.T. Shvets, S.V. Savenko, Ye.K. Malynovski // Condensed Matter Physics. — 2006. — Т. 9, № 1(45). — С. 127–133. — Бібліогр.: 15 назв. — англ. |
series |
Condensed Matter Physics |
work_keys_str_mv |
AT shvetsvt ionicinteractionandconductivityofmetallichydrogen AT savenkosv ionicinteractionandconductivityofmetallichydrogen AT malynovskiyek ionicinteractionandconductivityofmetallichydrogen |
first_indexed |
2023-10-18T20:39:08Z |
last_indexed |
2023-10-18T20:39:08Z |
_version_ |
1796150758506233856 |