Ionic interaction and conductivity of metallic hydrogen

We calculate the electroresistivity of metallic hydrogen within the framework of perturbation theory in electronproton interaction. To this end we employ the Kubo linear response theory while using the two-time retarded Green functions method to calculate the relaxation time. The expressions for t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Shvets, V.T., Savenko, S.V., Malynovski, Ye.K.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2006
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/121306
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Ionic interaction and conductivity of metallic hydrogen / V.T. Shvets, S.V. Savenko, Ye.K. Malynovski // Condensed Matter Physics. — 2006. — Т. 9, № 1(45). — С. 127–133. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-121306
record_format dspace
spelling irk-123456789-1213062017-06-15T03:05:14Z Ionic interaction and conductivity of metallic hydrogen Shvets, V.T. Savenko, S.V. Malynovski, Ye.K. We calculate the electroresistivity of metallic hydrogen within the framework of perturbation theory in electronproton interaction. To this end we employ the Kubo linear response theory while using the two-time retarded Green functions method to calculate the relaxation time. The expressions for the second and third order contributions are given. To describe the electron subsystem, the random phase approximation is used, allowing for the exchange interactions and correlations in a local field approximation. Thermodynamics of the proton subsystem is assumed to be given by the Percus-Yevick equation. At a given density and temperature the only parameter of the theory is the hard sphere diameter, which is calculated from effective pair ionic interaction. For a completely degenerated electron gas, the latter is determined by the density of the system. The dependence of the second and the third order contributions on the parameters of the theory is investigated. For all densities and temperatures examined here the third order contribution constitutes more than half of the second order term. The corresponding magnitude of resistivity is about 100 ∼ 250µΩ cm. 2006 Article Ionic interaction and conductivity of metallic hydrogen / V.T. Shvets, S.V. Savenko, Ye.K. Malynovski // Condensed Matter Physics. — 2006. — Т. 9, № 1(45). — С. 127–133. — Бібліогр.: 15 назв. — англ. 1607-324X PACS: 71.10.+x, 72.10.Bg, 72.15.Cz DOI:10.5488/CMP.9.1.127 http://dspace.nbuv.gov.ua/handle/123456789/121306 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We calculate the electroresistivity of metallic hydrogen within the framework of perturbation theory in electronproton interaction. To this end we employ the Kubo linear response theory while using the two-time retarded Green functions method to calculate the relaxation time. The expressions for the second and third order contributions are given. To describe the electron subsystem, the random phase approximation is used, allowing for the exchange interactions and correlations in a local field approximation. Thermodynamics of the proton subsystem is assumed to be given by the Percus-Yevick equation. At a given density and temperature the only parameter of the theory is the hard sphere diameter, which is calculated from effective pair ionic interaction. For a completely degenerated electron gas, the latter is determined by the density of the system. The dependence of the second and the third order contributions on the parameters of the theory is investigated. For all densities and temperatures examined here the third order contribution constitutes more than half of the second order term. The corresponding magnitude of resistivity is about 100 ∼ 250µΩ cm.
format Article
author Shvets, V.T.
Savenko, S.V.
Malynovski, Ye.K.
spellingShingle Shvets, V.T.
Savenko, S.V.
Malynovski, Ye.K.
Ionic interaction and conductivity of metallic hydrogen
Condensed Matter Physics
author_facet Shvets, V.T.
Savenko, S.V.
Malynovski, Ye.K.
author_sort Shvets, V.T.
title Ionic interaction and conductivity of metallic hydrogen
title_short Ionic interaction and conductivity of metallic hydrogen
title_full Ionic interaction and conductivity of metallic hydrogen
title_fullStr Ionic interaction and conductivity of metallic hydrogen
title_full_unstemmed Ionic interaction and conductivity of metallic hydrogen
title_sort ionic interaction and conductivity of metallic hydrogen
publisher Інститут фізики конденсованих систем НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/121306
citation_txt Ionic interaction and conductivity of metallic hydrogen / V.T. Shvets, S.V. Savenko, Ye.K. Malynovski // Condensed Matter Physics. — 2006. — Т. 9, № 1(45). — С. 127–133. — Бібліогр.: 15 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT shvetsvt ionicinteractionandconductivityofmetallichydrogen
AT savenkosv ionicinteractionandconductivityofmetallichydrogen
AT malynovskiyek ionicinteractionandconductivityofmetallichydrogen
first_indexed 2023-10-18T20:39:08Z
last_indexed 2023-10-18T20:39:08Z
_version_ 1796150758506233856