Non-universal critical behaviour of a mixed-spin Ising model on the extended Kagome lattice

The mixed spin-1/2 and spin-3/2 Ising model on the extended Kagome lattice is solved by establishing a mapping correspondence with the eight-vertex model. When the parameter of uniaxial single-ion anisotropy tends to infinity, the model system becomes exactly solvable as the staggered eight-vertex...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Strecka, J., Canova, L.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2006
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/121312
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Non-universal critical behaviour of a mixed-spin Ising model on the extended Kagome lattice / J. Strecka, L. Canova // Condensed Matter Physics. — 2006. — Т. 9, № 1(45). — С. 179–186. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The mixed spin-1/2 and spin-3/2 Ising model on the extended Kagome lattice is solved by establishing a mapping correspondence with the eight-vertex model. When the parameter of uniaxial single-ion anisotropy tends to infinity, the model system becomes exactly solvable as the staggered eight-vertex model satisfying the free-fermion condition. The critical points within this manifold can be characterized by critical exponents from the standard Ising universality class. The critical points within another subspace of interaction parameters, which corresponds to a coexistence surface between two ordered phases, can be approximated by corresponding results of the uniform eight-vertex model satisfying the zero-field condition. This coexistence surface is bounded by a line of bicritical points that have non-universal continuously varying critical indices