Neural control on multiple time scales: Insights from human stick balancing

The time-delayed feedback control mechanisms of the nervous system are continuously subjected to the effects of uncontrolled random perturbations (herein referred to as noise). In this setting the statistical properties of the fluctuations in the controlled variable(s) can provide non-invasive ins...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Cabrera, J.L., Luciani, C., Milton, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2006
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/121324
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Neural control on multiple time scales: Insights from human stick balancing / J.L. Cabrera, C. Luciani, J. Milton // Condensed Matter Physics. — 2006. — Т. 9, № 2(46). — С. 373–383. — Бібліогр.: 42 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-121324
record_format dspace
spelling irk-123456789-1213242017-06-15T03:03:10Z Neural control on multiple time scales: Insights from human stick balancing Cabrera, J.L. Luciani, C. Milton, J. The time-delayed feedback control mechanisms of the nervous system are continuously subjected to the effects of uncontrolled random perturbations (herein referred to as noise). In this setting the statistical properties of the fluctuations in the controlled variable(s) can provide non-invasive insights into the nature of the underlying control mechanisms. We illustrate this concept through a study of stick balancing at the fingertip using high speed motion capture techniques. Experimental observations together with numerical studies of a stochastic delay differential equation demonstrate that on time scales short compared to the neural time delay (“fast control”), parametric noise provides a non-predictive mechanism that transiently stabilizes the upright position of the balanced stick. Moreover, numerical simulations of a delayed random walker with a repulsive origin indicate that even an unstable fixed point can be transiently stabilized by the interplay between noise and time delay. In contrast, on time scales comparable to the neural time delay (“slow control”), feedback and feedforward control mechanisms become more important. The relative contribution of the fast and slow control mechanisms to stick balancing is dynamic and, for example, depends on the context in which stick balancing is performed and the expertise of the balancer. 2006 Article Neural control on multiple time scales: Insights from human stick balancing / J.L. Cabrera, C. Luciani, J. Milton // Condensed Matter Physics. — 2006. — Т. 9, № 2(46). — С. 373–383. — Бібліогр.: 42 назв. — англ. 1607-324X PACS: 89.75.-k, 87.19.St, 02.30.Ks, 05.45.-a, 02.50.-r DOI:10.5488/CMP.9.2.373 http://dspace.nbuv.gov.ua/handle/123456789/121324 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The time-delayed feedback control mechanisms of the nervous system are continuously subjected to the effects of uncontrolled random perturbations (herein referred to as noise). In this setting the statistical properties of the fluctuations in the controlled variable(s) can provide non-invasive insights into the nature of the underlying control mechanisms. We illustrate this concept through a study of stick balancing at the fingertip using high speed motion capture techniques. Experimental observations together with numerical studies of a stochastic delay differential equation demonstrate that on time scales short compared to the neural time delay (“fast control”), parametric noise provides a non-predictive mechanism that transiently stabilizes the upright position of the balanced stick. Moreover, numerical simulations of a delayed random walker with a repulsive origin indicate that even an unstable fixed point can be transiently stabilized by the interplay between noise and time delay. In contrast, on time scales comparable to the neural time delay (“slow control”), feedback and feedforward control mechanisms become more important. The relative contribution of the fast and slow control mechanisms to stick balancing is dynamic and, for example, depends on the context in which stick balancing is performed and the expertise of the balancer.
format Article
author Cabrera, J.L.
Luciani, C.
Milton, J.
spellingShingle Cabrera, J.L.
Luciani, C.
Milton, J.
Neural control on multiple time scales: Insights from human stick balancing
Condensed Matter Physics
author_facet Cabrera, J.L.
Luciani, C.
Milton, J.
author_sort Cabrera, J.L.
title Neural control on multiple time scales: Insights from human stick balancing
title_short Neural control on multiple time scales: Insights from human stick balancing
title_full Neural control on multiple time scales: Insights from human stick balancing
title_fullStr Neural control on multiple time scales: Insights from human stick balancing
title_full_unstemmed Neural control on multiple time scales: Insights from human stick balancing
title_sort neural control on multiple time scales: insights from human stick balancing
publisher Інститут фізики конденсованих систем НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/121324
citation_txt Neural control on multiple time scales: Insights from human stick balancing / J.L. Cabrera, C. Luciani, J. Milton // Condensed Matter Physics. — 2006. — Т. 9, № 2(46). — С. 373–383. — Бібліогр.: 42 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT cabrerajl neuralcontrolonmultipletimescalesinsightsfromhumanstickbalancing
AT lucianic neuralcontrolonmultipletimescalesinsightsfromhumanstickbalancing
AT miltonj neuralcontrolonmultipletimescalesinsightsfromhumanstickbalancing
first_indexed 2023-10-18T20:39:10Z
last_indexed 2023-10-18T20:39:10Z
_version_ 1796150760417787904