Green’s function formalism for highly correlated systems
We present the Composite Operator Method (COM) as a modern approach to the study of strongly correlated electronic systems, based on the equation of motion and Green’s function method. COM uses propagators of composite operators as building blocks at the basis of approximate calculations and algeb...
Збережено в:
Дата: | 2006 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2006
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/121362 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Green’s function formalism for highly correlated systems / F. Mancini, A. Avella // Condensed Matter Physics. — 2006. — Т. 9, № 3(47). — С. 569–586. — Бібліогр.: 71 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-121362 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1213622017-06-15T03:03:29Z Green’s function formalism for highly correlated systems Mancini, F. Avella, A. We present the Composite Operator Method (COM) as a modern approach to the study of strongly correlated electronic systems, based on the equation of motion and Green’s function method. COM uses propagators of composite operators as building blocks at the basis of approximate calculations and algebra constrains to fix the representation of Green’s functions in order to maintain the algebraic and symmetry properties. Представлено метод композитних операторiв (МКО) у якостi сучасного пiдходу для дослiдження сильноскорельованих електронних систем, що базується на методах рiвнянь руху та функцiй Грiна. МКО використовує конструкцiї з пропагаторiв композитних операторiв для наближених розрахункiв, а також алгебраїчнi умови для визначення представлення функцiй Грiна, щоб забезпечити алгебраїчнi та симетрiйнi властивостi. 2006 Article Green’s function formalism for highly correlated systems / F. Mancini, A. Avella // Condensed Matter Physics. — 2006. — Т. 9, № 3(47). — С. 569–586. — Бібліогр.: 71 назв. — англ. 1607-324X PACS: 71.10.-w, 71.27.+a, 71.10.Fd DOI:10.5488/CMP.9.3.569 http://dspace.nbuv.gov.ua/handle/123456789/121362 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We present the Composite Operator Method (COM) as a modern approach to the study of strongly correlated
electronic systems, based on the equation of motion and Green’s function method. COM uses propagators of
composite operators as building blocks at the basis of approximate calculations and algebra constrains to fix
the representation of Green’s functions in order to maintain the algebraic and symmetry properties. |
format |
Article |
author |
Mancini, F. Avella, A. |
spellingShingle |
Mancini, F. Avella, A. Green’s function formalism for highly correlated systems Condensed Matter Physics |
author_facet |
Mancini, F. Avella, A. |
author_sort |
Mancini, F. |
title |
Green’s function formalism for highly correlated systems |
title_short |
Green’s function formalism for highly correlated systems |
title_full |
Green’s function formalism for highly correlated systems |
title_fullStr |
Green’s function formalism for highly correlated systems |
title_full_unstemmed |
Green’s function formalism for highly correlated systems |
title_sort |
green’s function formalism for highly correlated systems |
publisher |
Інститут фізики конденсованих систем НАН України |
publishDate |
2006 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/121362 |
citation_txt |
Green’s function formalism for highly correlated systems / F. Mancini, A. Avella // Condensed Matter Physics. — 2006. — Т. 9, № 3(47). — С. 569–586. — Бібліогр.: 71 назв. — англ. |
series |
Condensed Matter Physics |
work_keys_str_mv |
AT mancinif greensfunctionformalismforhighlycorrelatedsystems AT avellaa greensfunctionformalismforhighlycorrelatedsystems |
first_indexed |
2023-10-18T20:39:16Z |
last_indexed |
2023-10-18T20:39:16Z |
_version_ |
1796150764657180672 |