Green’s function formalism for highly correlated systems

We present the Composite Operator Method (COM) as a modern approach to the study of strongly correlated electronic systems, based on the equation of motion and Green’s function method. COM uses propagators of composite operators as building blocks at the basis of approximate calculations and algeb...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Mancini, F., Avella, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2006
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/121362
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Green’s function formalism for highly correlated systems / F. Mancini, A. Avella // Condensed Matter Physics. — 2006. — Т. 9, № 3(47). — С. 569–586. — Бібліогр.: 71 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-121362
record_format dspace
spelling irk-123456789-1213622017-06-15T03:03:29Z Green’s function formalism for highly correlated systems Mancini, F. Avella, A. We present the Composite Operator Method (COM) as a modern approach to the study of strongly correlated electronic systems, based on the equation of motion and Green’s function method. COM uses propagators of composite operators as building blocks at the basis of approximate calculations and algebra constrains to fix the representation of Green’s functions in order to maintain the algebraic and symmetry properties. Представлено метод композитних операторiв (МКО) у якостi сучасного пiдходу для дослiдження сильноскорельованих електронних систем, що базується на методах рiвнянь руху та функцiй Грiна. МКО використовує конструкцiї з пропагаторiв композитних операторiв для наближених розрахункiв, а також алгебраїчнi умови для визначення представлення функцiй Грiна, щоб забезпечити алгебраїчнi та симетрiйнi властивостi. 2006 Article Green’s function formalism for highly correlated systems / F. Mancini, A. Avella // Condensed Matter Physics. — 2006. — Т. 9, № 3(47). — С. 569–586. — Бібліогр.: 71 назв. — англ. 1607-324X PACS: 71.10.-w, 71.27.+a, 71.10.Fd DOI:10.5488/CMP.9.3.569 http://dspace.nbuv.gov.ua/handle/123456789/121362 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We present the Composite Operator Method (COM) as a modern approach to the study of strongly correlated electronic systems, based on the equation of motion and Green’s function method. COM uses propagators of composite operators as building blocks at the basis of approximate calculations and algebra constrains to fix the representation of Green’s functions in order to maintain the algebraic and symmetry properties.
format Article
author Mancini, F.
Avella, A.
spellingShingle Mancini, F.
Avella, A.
Green’s function formalism for highly correlated systems
Condensed Matter Physics
author_facet Mancini, F.
Avella, A.
author_sort Mancini, F.
title Green’s function formalism for highly correlated systems
title_short Green’s function formalism for highly correlated systems
title_full Green’s function formalism for highly correlated systems
title_fullStr Green’s function formalism for highly correlated systems
title_full_unstemmed Green’s function formalism for highly correlated systems
title_sort green’s function formalism for highly correlated systems
publisher Інститут фізики конденсованих систем НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/121362
citation_txt Green’s function formalism for highly correlated systems / F. Mancini, A. Avella // Condensed Matter Physics. — 2006. — Т. 9, № 3(47). — С. 569–586. — Бібліогр.: 71 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT mancinif greensfunctionformalismforhighlycorrelatedsystems
AT avellaa greensfunctionformalismforhighlycorrelatedsystems
first_indexed 2023-10-18T20:39:16Z
last_indexed 2023-10-18T20:39:16Z
_version_ 1796150764657180672