Reduced description of nonequilibrium processes and correlation functions. Divergences and non-analyticity

A complete theory for investigation of time correlation functions is developed on the basis of the Bogolyubov reduced description method proceeding from his functional hypothesis. The problem of convergence in the theory of nonequilibrium processes and its relation to the non-analytic dependence o...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автор: Sokolovsky, A.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2006
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/121366
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Reduced description of nonequilibrium processes and correlation functions. Divergences and non-analyticity / A.I. Sokolovsky // Condensed Matter Physics. — 2006. — Т. 9, № 3(47). — С. 415–430. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:A complete theory for investigation of time correlation functions is developed on the basis of the Bogolyubov reduced description method proceeding from his functional hypothesis. The problem of convergence in the theory of nonequilibrium processes and its relation to the non-analytic dependence of basic values of the theory on a small parameter of the perturbation theory are discussed. A natural regularization of integral equations of the theory is proposed. In the framework of a model of slow variables (hydrodynamics of a fluid, kinetics of a gas) a generalized perturbation theory without divergencies is constructed corresponding to a partial summation in a usual perturbation theory. Properties of Green functions are discussed on the basis of resolvent formalism for the Liouville operator. A generalized Ernst and Dorfman theory is elaborated allowing to study the peculiarities of correlation and Green functions and to solve the convergence problem in the reduced description method.