Quantum statistical mechanics of electron gas in magnetic field

Electron eigenstates in a magnetic field are considered. Density of the electrical current and an averaged magnetic moment are obtained. Density of states is investigated for two-dimensional electron in a circle that is bounded by the infinite potential barrier. The present study shows that the co...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автор: Dubrovskii, I.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2006
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/121376
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Quantum statistical mechanics of electron gas in magnetic field / I.M. Dubrovskii // Condensed Matter Physics. — 2006. — Т. 9, № 4(48). — С. 645–658. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-121376
record_format dspace
spelling irk-123456789-1213762017-06-15T03:03:32Z Quantum statistical mechanics of electron gas in magnetic field Dubrovskii, I.M. Electron eigenstates in a magnetic field are considered. Density of the electrical current and an averaged magnetic moment are obtained. Density of states is investigated for two-dimensional electron in a circle that is bounded by the infinite potential barrier. The present study shows that the common quantum statistical mechanics of electron gas in a magnetic field leads to incorrect results. The magnetic moment of electron gas can be computed as the sum of averaged moments of the occupied states. The computations lead to the results that differ from the ones obtained as the derivative of the thermodynamical potential with respect to the magnetic field. Other contradictions in common statistical thermodynamics of electron gas in a magnetic field are pointed out. The conclusion is done that these contradictions arise from using the incorrect statistical operator. A new quantum function of distribution is derived from the basic principles, taking into account the law of conservation of an angular momentum. These results are in accord with the theory that has been obtained within the framework of classical statistical thermodynamics in the previous work. Розглянуто власнi стани електрону в магнiтному полi. Одержано густину електричного струму i середнiй магнiтний момент. Дослiджено густину станiв для двовимiрного електрону в колi обмеженому нескiнченним потенцiальним бар’єром. З використанням цих результатiв показано, що загальноприйнята квантова статистична механiка електронного газу в магнiтному полi приводить до помилкових результатiв. Магнiтний момент електронного газу може бути обчислений як сумма середнiх моментiв заповнених станiв. Таке обчислення приводить до результату, що вiдрiзняється вiд того, який одержується як похiдна термодинамiчного потенцiалу по магнiтному полю. Наведено й iншi протирiччя у загальноприйнятiй статистичнiй термодинамiцi електронного газу в магнiтному полi. Зроблено висновок, що цi протирiччя виникають внаслiдок використання неправильного статистичного оператора. Нова квантова функцiя розподiлу виведена з основних принципiв, беручи до уваги закон збереження кутового моменту. Цi результати узгоджуються з теорiєю, яка була виведена у рамках класичної статистичної термодинамiки у попереднiй роботi 2006 Article Quantum statistical mechanics of electron gas in magnetic field / I.M. Dubrovskii // Condensed Matter Physics. — 2006. — Т. 9, № 4(48). — С. 645–658. — Бібліогр.: 13 назв. — англ. 1607-324X PACS: 05.30.Ch, 75.20.-g DOI:10.5488/CMP.9.4.645 http://dspace.nbuv.gov.ua/handle/123456789/121376 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Electron eigenstates in a magnetic field are considered. Density of the electrical current and an averaged magnetic moment are obtained. Density of states is investigated for two-dimensional electron in a circle that is bounded by the infinite potential barrier. The present study shows that the common quantum statistical mechanics of electron gas in a magnetic field leads to incorrect results. The magnetic moment of electron gas can be computed as the sum of averaged moments of the occupied states. The computations lead to the results that differ from the ones obtained as the derivative of the thermodynamical potential with respect to the magnetic field. Other contradictions in common statistical thermodynamics of electron gas in a magnetic field are pointed out. The conclusion is done that these contradictions arise from using the incorrect statistical operator. A new quantum function of distribution is derived from the basic principles, taking into account the law of conservation of an angular momentum. These results are in accord with the theory that has been obtained within the framework of classical statistical thermodynamics in the previous work.
format Article
author Dubrovskii, I.M.
spellingShingle Dubrovskii, I.M.
Quantum statistical mechanics of electron gas in magnetic field
Condensed Matter Physics
author_facet Dubrovskii, I.M.
author_sort Dubrovskii, I.M.
title Quantum statistical mechanics of electron gas in magnetic field
title_short Quantum statistical mechanics of electron gas in magnetic field
title_full Quantum statistical mechanics of electron gas in magnetic field
title_fullStr Quantum statistical mechanics of electron gas in magnetic field
title_full_unstemmed Quantum statistical mechanics of electron gas in magnetic field
title_sort quantum statistical mechanics of electron gas in magnetic field
publisher Інститут фізики конденсованих систем НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/121376
citation_txt Quantum statistical mechanics of electron gas in magnetic field / I.M. Dubrovskii // Condensed Matter Physics. — 2006. — Т. 9, № 4(48). — С. 645–658. — Бібліогр.: 13 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT dubrovskiiim quantumstatisticalmechanicsofelectrongasinmagneticfield
first_indexed 2023-10-18T20:39:18Z
last_indexed 2023-10-18T20:39:18Z
_version_ 1796150766033960960