Functional representation for the grand partition function of a multicomponent system of charged particles: Correlation functions of the reference system

Based on the method of collective variables (CV) with a reference system, the exact expression for the functional of the grand partition function of a m-component ionic model with charge and size asymmetry is found. Particular attention is paid to the nth particle correlation functions of the refe...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Patsahan, O.V., Mryglod, I.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2006
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/121377
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Functional representation for the grand partition function of a multicomponent system of charged particles: Correlation functions of the reference system / O.V. Patsahan, I.M. Mryglod // Condensed Matter Physics. — 2006. — Т. 9, № 4(48). — С. 659–668. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-121377
record_format dspace
spelling irk-123456789-1213772017-06-15T03:03:26Z Functional representation for the grand partition function of a multicomponent system of charged particles: Correlation functions of the reference system Patsahan, O.V. Mryglod, I.M. Based on the method of collective variables (CV) with a reference system, the exact expression for the functional of the grand partition function of a m-component ionic model with charge and size asymmetry is found. Particular attention is paid to the nth particle correlation functions of the reference system which is presented as a m-component system of “colour” hard spheres of the same diameter. A two-component model is considered in more detail. In this case the recurrence formulas for the correlation functions are found. A general case of a m-component inhomogeneous system of the “colour” hard spheres is also analysed. На основi методу колективних змiнних з системою вiдлiку, отримано точний вираз для функцiоналу великої статистичної суми m-компонентної iонної моделi з асиметрiєю розмiрiв та зарядiв. Особлива увага придiляється n-частинковим кореляцiйним функцiям системи вiдлiку, яка представляється як m-компонентна система “кольорових” твердих сфер однакового дiаметру. Детально розглянуто випадок двокомпонентної моделi, для якої отримано рекурентнi формули для кореляцiйних функцiй. Також проаналiзовано випадок m-компонентної неоднорiдної системи “кольорових” твердих сфер. 2006 Article Functional representation for the grand partition function of a multicomponent system of charged particles: Correlation functions of the reference system / O.V. Patsahan, I.M. Mryglod // Condensed Matter Physics. — 2006. — Т. 9, № 4(48). — С. 659–668. — Бібліогр.: 17 назв. — англ. 1607-324X PACS: 05.70.Fh, 05.70.Jk, 65.10.+h DOI:10.5488/CMP.9.4.659 http://dspace.nbuv.gov.ua/handle/123456789/121377 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Based on the method of collective variables (CV) with a reference system, the exact expression for the functional of the grand partition function of a m-component ionic model with charge and size asymmetry is found. Particular attention is paid to the nth particle correlation functions of the reference system which is presented as a m-component system of “colour” hard spheres of the same diameter. A two-component model is considered in more detail. In this case the recurrence formulas for the correlation functions are found. A general case of a m-component inhomogeneous system of the “colour” hard spheres is also analysed.
format Article
author Patsahan, O.V.
Mryglod, I.M.
spellingShingle Patsahan, O.V.
Mryglod, I.M.
Functional representation for the grand partition function of a multicomponent system of charged particles: Correlation functions of the reference system
Condensed Matter Physics
author_facet Patsahan, O.V.
Mryglod, I.M.
author_sort Patsahan, O.V.
title Functional representation for the grand partition function of a multicomponent system of charged particles: Correlation functions of the reference system
title_short Functional representation for the grand partition function of a multicomponent system of charged particles: Correlation functions of the reference system
title_full Functional representation for the grand partition function of a multicomponent system of charged particles: Correlation functions of the reference system
title_fullStr Functional representation for the grand partition function of a multicomponent system of charged particles: Correlation functions of the reference system
title_full_unstemmed Functional representation for the grand partition function of a multicomponent system of charged particles: Correlation functions of the reference system
title_sort functional representation for the grand partition function of a multicomponent system of charged particles: correlation functions of the reference system
publisher Інститут фізики конденсованих систем НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/121377
citation_txt Functional representation for the grand partition function of a multicomponent system of charged particles: Correlation functions of the reference system / O.V. Patsahan, I.M. Mryglod // Condensed Matter Physics. — 2006. — Т. 9, № 4(48). — С. 659–668. — Бібліогр.: 17 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT patsahanov functionalrepresentationforthegrandpartitionfunctionofamulticomponentsystemofchargedparticlescorrelationfunctionsofthereferencesystem
AT mryglodim functionalrepresentationforthegrandpartitionfunctionofamulticomponentsystemofchargedparticlescorrelationfunctionsofthereferencesystem
first_indexed 2023-10-18T20:39:18Z
last_indexed 2023-10-18T20:39:18Z
_version_ 1796150766139867136