Modelling of micro- and nanodomain arrays recorded in ferroelectrics-semiconductors by using atomic force microscopy

The thermodynamical theory of nanodomain tailoring in ferroelectrics-semiconductors allowing for semiconducting properties, screening and size effects is presented. The obtained analytical results prove that domains appearance is similar to the first order phase transition and completely agree with...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автор: Morozovska, A.N.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 2006
Назва видання:Semiconductor Physics Quantum Electronics & Optoelectronics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/121428
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Modelling of micro- and nanodomain arrays recorded in ferroelectrics-semiconductors by using atomic force microscopy / A.N. Morozovska // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2006. — Т. 9, № 2. — С. 26-33. — Бібліогр.: 43 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The thermodynamical theory of nanodomain tailoring in ferroelectrics-semiconductors allowing for semiconducting properties, screening and size effects is presented. The obtained analytical results prove that domains appearance is similar to the first order phase transition and completely agree with experimentally observed threshold nanodomains recording in Pb(Zr,Ti)O₃ and LiTaO₃ thin films. The realistic dependence of equilibrium nanodomain radius over applied voltage in BaTiO₃ LiNbO₃ ferroelectric-semiconductors, LiTaO₃ and Pb(Zr,Ti)O₃ thin films have been calculated. These results will help researchers both to achieve the reliable understanding of physical process taking place during nanoscale polarization reversal in the ferroelectric-semiconducting media and to determine the necessary conditions in order to record stable nanodomains with optimum lateral sizes and configuration to increase recording density and create various profiled microstructures.