Symmetry of life in crystals
The results of the study of quasicrystals matrix models are presented, which confirm the hypothesis that each quasicrystal has corresponding quasiorthogonal matrix associated with it, the golden ratio matrix meets the D.Shechtman quasicrystal. It is concluded that for the ordered structures consisti...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
НТК «Інститут монокристалів» НАН України
2016
|
Назва видання: | Functional Materials |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/121511 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Symmetry of life in crystals / N.A. Balonin, V.S. Suzdal // Functional Materials. — 2016. — Т. 23, № 4. — С. 592-598. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The results of the study of quasicrystals matrix models are presented, which confirm the hypothesis that each quasicrystal has corresponding quasiorthogonal matrix associated with it, the golden ratio matrix meets the D.Shechtman quasicrystal. It is concluded that for the ordered structures consisting of two endlessly recurring units, a modular two-level golden ratio matrix may be a model reflecting the structure elements. The main interest here is in the indication of the prospects: both the materials and the matrices can have different structures, and the matrices can be involved in predicting the existence and then in analyzing the materials. |
---|