The logical closure limit of superconductivity descriptions

The quantum description of macroscopic behaviour seems requiring the existence of limits imposed by the consideration hold on the logical closure of the theory, according to this, the J.A. Wheeler black box [1] will act under a coherence length of second order. The use of mathematical beings transl...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Bousnane, Z., Merabtine, N., Benslama, M., Boussaad, F.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 2006
Назва видання:Semiconductor Physics Quantum Electronics & Optoelectronics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/121635
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The logical closure limit of superconductivity descriptions / Z. Bousnane, N. Merabtine, M. Benslama, F. Boussaad // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2006. — Т. 9, № 4. — С. 65-66. — Бібліогр.: 3 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-121635
record_format dspace
spelling irk-123456789-1216352017-06-16T03:03:56Z The logical closure limit of superconductivity descriptions Bousnane, Z. Merabtine, N. Benslama, M. Boussaad, F. The quantum description of macroscopic behaviour seems requiring the existence of limits imposed by the consideration hold on the logical closure of the theory, according to this, the J.A. Wheeler black box [1] will act under a coherence length of second order. The use of mathematical beings translating the phases transitions in nature are displayed in one-way, the reversibility parameter associated to the black box is severely limited according to the way we disturb the constants and the functions used to describe a given phenomenon. The combinatory formulation of matter is always accompanied by the length scales orientation phenomenon that must be seen as a measurement process of second order. The non-reproducibility of experiments will be dealing with the non-account of the amplitude of length scales interactions, this amplitude manages the combinatory of macroscopic levels between an observer and observed. Some introduced concepts as an entropic potential, the breaking of equivalence are making the emergence of picture of superconductivity as reproducible phenomenon according to the “intrinsic states reproducibility” with number estimated on universal constants expressions limited by the difference between cooled and cooling. 2006 Article The logical closure limit of superconductivity descriptions / Z. Bousnane, N. Merabtine, M. Benslama, F. Boussaad // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2006. — Т. 9, № 4. — С. 65-66. — Бібліогр.: 3 назв. — англ. 1560-8034 PACS 74.25.Bt http://dspace.nbuv.gov.ua/handle/123456789/121635 en Semiconductor Physics Quantum Electronics & Optoelectronics Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The quantum description of macroscopic behaviour seems requiring the existence of limits imposed by the consideration hold on the logical closure of the theory, according to this, the J.A. Wheeler black box [1] will act under a coherence length of second order. The use of mathematical beings translating the phases transitions in nature are displayed in one-way, the reversibility parameter associated to the black box is severely limited according to the way we disturb the constants and the functions used to describe a given phenomenon. The combinatory formulation of matter is always accompanied by the length scales orientation phenomenon that must be seen as a measurement process of second order. The non-reproducibility of experiments will be dealing with the non-account of the amplitude of length scales interactions, this amplitude manages the combinatory of macroscopic levels between an observer and observed. Some introduced concepts as an entropic potential, the breaking of equivalence are making the emergence of picture of superconductivity as reproducible phenomenon according to the “intrinsic states reproducibility” with number estimated on universal constants expressions limited by the difference between cooled and cooling.
format Article
author Bousnane, Z.
Merabtine, N.
Benslama, M.
Boussaad, F.
spellingShingle Bousnane, Z.
Merabtine, N.
Benslama, M.
Boussaad, F.
The logical closure limit of superconductivity descriptions
Semiconductor Physics Quantum Electronics & Optoelectronics
author_facet Bousnane, Z.
Merabtine, N.
Benslama, M.
Boussaad, F.
author_sort Bousnane, Z.
title The logical closure limit of superconductivity descriptions
title_short The logical closure limit of superconductivity descriptions
title_full The logical closure limit of superconductivity descriptions
title_fullStr The logical closure limit of superconductivity descriptions
title_full_unstemmed The logical closure limit of superconductivity descriptions
title_sort logical closure limit of superconductivity descriptions
publisher Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/121635
citation_txt The logical closure limit of superconductivity descriptions / Z. Bousnane, N. Merabtine, M. Benslama, F. Boussaad // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2006. — Т. 9, № 4. — С. 65-66. — Бібліогр.: 3 назв. — англ.
series Semiconductor Physics Quantum Electronics & Optoelectronics
work_keys_str_mv AT bousnanez thelogicalclosurelimitofsuperconductivitydescriptions
AT merabtinen thelogicalclosurelimitofsuperconductivitydescriptions
AT benslamam thelogicalclosurelimitofsuperconductivitydescriptions
AT boussaadf thelogicalclosurelimitofsuperconductivitydescriptions
AT bousnanez logicalclosurelimitofsuperconductivitydescriptions
AT merabtinen logicalclosurelimitofsuperconductivitydescriptions
AT benslamam logicalclosurelimitofsuperconductivitydescriptions
AT boussaadf logicalclosurelimitofsuperconductivitydescriptions
first_indexed 2023-10-18T20:39:56Z
last_indexed 2023-10-18T20:39:56Z
_version_ 1796150793184739328