Smart nanocarriers for drug delivery: controllable LSPR tuning
Gold nanostructures are considered as a potential platform for building smart nanocarriers that will form the basis of novel methods of targeted delivery and controlled release of drugs. However, to ensure maximum efficiency of gold nanoparticles upon the drug release via the plasmon-enhanced photot...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
2016
|
Назва видання: | Semiconductor Physics Quantum Electronics & Optoelectronics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/121656 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Smart nanocarriers for drug delivery: controllable LSPR tuning / A.M. Lopatynskyi, V.K. Lytvyn, I.V. Mogylnyi, O.E. Rachkov, O.P. Soldatkin, V.I. Chegel // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2016. — Т. 19, № 4. — С. 358-365. — Бібліогр.: 44 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-121656 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1216562017-06-16T03:02:31Z Smart nanocarriers for drug delivery: controllable LSPR tuning Lopatynskyi, A.M. Lytvyn, V.K. Mogylnyi, I.V. Rachkov, O.E. Soldatkin, O.P. Chegel, V.I. Gold nanostructures are considered as a potential platform for building smart nanocarriers that will form the basis of novel methods of targeted delivery and controlled release of drugs. However, to ensure maximum efficiency of gold nanoparticles upon the drug release via the plasmon-enhanced photothermal effect, it is necessary to optimize their spectral parameters for operation in the human body that requires both theoretical research and development of appropriate methods for nanostructures fabrication. In this work, mathematical modeling of light extinction spectral dependences for gold nanostructures of different morphology was performed to determine their geometric parameters that provide the occurrence of localized surface plasmon resonance (LSPR) in the red and near infrared regions of the spectrum, where the transparency window of biological tissues exists. Based on the results of previous studies and computer modeling, using hollow gold nanoshells to construct smart nanocarriers was found to be most reasonable. A protocol for production of these nanoparticles based on “silver-gold” galvanic replacement reaction, which is accompanied by a controlled shift of the LSPR wavelength position, was proposed and described in detail. It is shown that the loading of model biomolecules in hollow gold nanoshells significantly changes the output optical parameters of the system under investigation, which should be taken into account for matching with the laser excitation wavelength during the development of smart nanocarriers. 2016 Article Smart nanocarriers for drug delivery: controllable LSPR tuning / A.M. Lopatynskyi, V.K. Lytvyn, I.V. Mogylnyi, O.E. Rachkov, O.P. Soldatkin, V.I. Chegel // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2016. — Т. 19, № 4. — С. 358-365. — Бібліогр.: 44 назв. — англ. 1560-8034 DOI: 10.15407/spqeo19.04.358 PACS 73.20.Mf, 81.07.Bc, 87.50.wp, 87.85.Rs http://dspace.nbuv.gov.ua/handle/123456789/121656 en Semiconductor Physics Quantum Electronics & Optoelectronics Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Gold nanostructures are considered as a potential platform for building smart nanocarriers that will form the basis of novel methods of targeted delivery and controlled release of drugs. However, to ensure maximum efficiency of gold nanoparticles upon the drug release via the plasmon-enhanced photothermal effect, it is necessary to optimize their spectral parameters for operation in the human body that requires both theoretical research and development of appropriate methods for nanostructures fabrication. In this work, mathematical modeling of light extinction spectral dependences for gold nanostructures of different morphology was performed to determine their geometric parameters that provide the occurrence of localized surface plasmon resonance (LSPR) in the red and near infrared regions of the spectrum, where the transparency window of biological tissues exists. Based on the results of previous studies and computer modeling, using hollow gold nanoshells to construct smart nanocarriers was found to be most reasonable. A protocol for production of these nanoparticles based on “silver-gold” galvanic replacement reaction, which is accompanied by a controlled shift of the LSPR wavelength position, was proposed and described in detail. It is shown that the loading of model biomolecules in hollow gold nanoshells significantly changes the output optical parameters of the system under investigation, which should be taken into account for matching with the laser excitation wavelength during the development of smart nanocarriers. |
format |
Article |
author |
Lopatynskyi, A.M. Lytvyn, V.K. Mogylnyi, I.V. Rachkov, O.E. Soldatkin, O.P. Chegel, V.I. |
spellingShingle |
Lopatynskyi, A.M. Lytvyn, V.K. Mogylnyi, I.V. Rachkov, O.E. Soldatkin, O.P. Chegel, V.I. Smart nanocarriers for drug delivery: controllable LSPR tuning Semiconductor Physics Quantum Electronics & Optoelectronics |
author_facet |
Lopatynskyi, A.M. Lytvyn, V.K. Mogylnyi, I.V. Rachkov, O.E. Soldatkin, O.P. Chegel, V.I. |
author_sort |
Lopatynskyi, A.M. |
title |
Smart nanocarriers for drug delivery: controllable LSPR tuning |
title_short |
Smart nanocarriers for drug delivery: controllable LSPR tuning |
title_full |
Smart nanocarriers for drug delivery: controllable LSPR tuning |
title_fullStr |
Smart nanocarriers for drug delivery: controllable LSPR tuning |
title_full_unstemmed |
Smart nanocarriers for drug delivery: controllable LSPR tuning |
title_sort |
smart nanocarriers for drug delivery: controllable lspr tuning |
publisher |
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/121656 |
citation_txt |
Smart nanocarriers for drug delivery: controllable LSPR tuning / A.M. Lopatynskyi, V.K. Lytvyn, I.V. Mogylnyi, O.E. Rachkov, O.P. Soldatkin, V.I. Chegel // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2016. — Т. 19, № 4. — С. 358-365. — Бібліогр.: 44 назв. — англ. |
series |
Semiconductor Physics Quantum Electronics & Optoelectronics |
work_keys_str_mv |
AT lopatynskyiam smartnanocarriersfordrugdeliverycontrollablelsprtuning AT lytvynvk smartnanocarriersfordrugdeliverycontrollablelsprtuning AT mogylnyiiv smartnanocarriersfordrugdeliverycontrollablelsprtuning AT rachkovoe smartnanocarriersfordrugdeliverycontrollablelsprtuning AT soldatkinop smartnanocarriersfordrugdeliverycontrollablelsprtuning AT chegelvi smartnanocarriersfordrugdeliverycontrollablelsprtuning |
first_indexed |
2023-10-18T20:39:59Z |
last_indexed |
2023-10-18T20:39:59Z |
_version_ |
1796150795407720448 |