Shubnikov—de Haas oscillations, peaks and different temperature regimes of the diagonal conductivity in the integer quantum Hall conductor

A theory for the Shubnikov—de Haas oscillations in the diagonal conductivity σxx of a 2D conductor is developed for the case when electron states within the broaden Landau levels are localized except the narrow stripe in the center. The standard Shubnikov—de Haas oscillations take place only in the...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автор: Gvozdikov, V.M.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2005
Назва видання:Физика низких температур
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/121677
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Shubnikov—de Haas oscillations, peaks and different temperature regimes of the diagonal conductivity in the integer quantum Hall conductor / V.M. Gvozdikov // Физика низких температур. — 2005. — Т. 31, № 7. — С. 826-831. — Бібліогр.: 19 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:A theory for the Shubnikov—de Haas oscillations in the diagonal conductivity σxx of a 2D conductor is developed for the case when electron states within the broaden Landau levels are localized except the narrow stripe in the center. The standard Shubnikov—de Haas oscillations take place only in the low-field region which at higher magnetic fields crosses over into peaks. In the limit Ωτ >> 1 peaks in the σxx became sharp and between them σxx → 0 (Ω is the cyclotron frequency, τ is the electron scattering time). The conductivity peaks display different temperature behavior with the decrease of temperature, T: a thermal activation regime, σxx exp(-Δ/T), which holds at higher temperatures, crosses over into the variable-range-hopping regime at lower temperatures with σxx 1/T exp(-√(Т₀/Т) (the prefactor 1/T is absent in the conductance).