Fermionic versus bosonic descriptions of one-dimensional spin-gapped antiferromagnets

In terms of spinless fermions and spin waves, we describe magnetic properties of a spin-1/2 ferromagnetic– antiferromagnetic bond-alternating chain which behaves as a Haldane-gap antiferromagnet. On one hand, we employ the Jordan–Wigner transformation and treat the fermionic Hamiltonian within th...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автори: Yamamoto, Shoji, Funase, Kei-ichi
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2005
Назва видання:Физика низких температур
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/121692
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Fermionic versus bosonic descriptions of one-dimensional spin-gapped antiferromagnets / Shoji Yamamoto, Kei-ichi Funase // Физика низких температур. — 2005. — Т. 31, № 8-9. — С. 974-983. — Бібліогр.: 112 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:In terms of spinless fermions and spin waves, we describe magnetic properties of a spin-1/2 ferromagnetic– antiferromagnetic bond-alternating chain which behaves as a Haldane-gap antiferromagnet. On one hand, we employ the Jordan–Wigner transformation and treat the fermionic Hamiltonian within the Hartree–Fock approximation. On the other hand, we employ the Holstein– Primakoff transformation and modify the conventional spin-wave theory so as to restore the sublattice symmetry. We calculate the excitation gap, the specific heat, the magnetic susceptibility, magnetization curves, and the nuclear spin-lattice relaxation rate with varying bond alternation. These schemes are further applied to a bond-alternating tetramerized chain which behaves as a ferrimagnet. The fermionic language is particularly stressed as a useful tool to investigate one-dimensional spin-gapped antiferromagnets, while the bosonic one works better for ferrimagnets.